Sweet Poisons: Synthetic Strategies towards Tutin Glycosides
Duong Nhu A , Lesley Larsen A B , Nigel B. Perry A B , David S. Larsen A and Bill C. Hawkins A CA Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
B The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
C Corresponding author. Email: bhawkins@chemistry.otago.ac.nz
Australian Journal of Chemistry 70(3) 301-306 https://doi.org/10.1071/CH16429
Submitted: 22 July 2016 Accepted: 23 August 2016 Published: 15 September 2016
Abstract
The polycyclic, polyoxygenated picrotoxane tutin was subjected to various glycosylation reaction conditions in an effort to synthesise β-linked tutin glycosides, recently found in toxic honeys. Cationic palladium-mediated glycosylation of tutin was successful; however, the α-linked tutin tetrabenzyl glucoside was obtained as the major product (5 : 1, α : β). Hydrogenolysis of the benzyl ether protecting groups resulted in concomitant tutin double-bond migration. Epoxide opening and rearrangement were observed upon acetylation of the tutin glucoside.
References
[1] (a) B. M. Craven, Nature 1963, 197, 1193.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXntVertA%3D%3D&md5=42ca2a6c96a54a746a6f09cb8b7842f9CAS |
(b) E. Gossinger, Fortschr. Chem. Org. Naturst. 2010, 93, 71.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) M. D. Sutherland, Anal. Proc. 1992, 29, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitV2nsbY%3D&md5=02abb0257e4159c70803a09703e17316CAS |
(b) J. L. Love, Anal. Proc. 1990, 27, 87.
| Crossref | GoogleScholarGoogle Scholar |
[3] Food Standards Australia New Zealand (SANZ), Proposal P1009 – Maximum Limits for Tutin in Honey Explanatory Statement 2014. Available at http://www.comlaw.gov.au/Details/F2011L00213/dc5fd7f0-b890-4abf-8fba-16e12897451c (accessed 14 June 2016).
[4] B. A. Fields, J. Reeve, A. Bartholomaeus, U. Mueller, Food Chem. Toxicol. 2014, 72, 234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ymtbvP&md5=219178e12bf66421dac9931bd76533f3CAS | 25084484PubMed |
[5] L. Larsen, N. I. Joyce, C. E. Sansom, J. M. Cooney, D. J. Jensen, N. B. Perry, J. Nat. Prod. 2015, 78, 1363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovVShtb4%3D&md5=ec9cd55631ba314da3d7a80b8303c88bCAS | 25993882PubMed |
[6] (a) K. Wakamatsu, H. Kigoshi, K. Niiyama, H. Niwa, K. Yamada, Tetrahedron Lett. 1984, 25, 3873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlSku78%3D&md5=e8ddb27a9e06cfd7d122fee40463c8edCAS |
(b) K. Wakamatsu, H. Kigoshi, K. Niiyama, H. Niwa, K. Yamada, Tetrahedron 1986, 42, 5551.
| Crossref | GoogleScholarGoogle Scholar |
[7] N. B. Perry, M. Aiyaz, D. S. Kerr, R. J. Lake, M. T. Leach, Phytochem. Anal. 2001, 12, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Krsrs%3D&md5=7c6a73057c15aae6c75a1f91a01708faCAS | 11704965PubMed |
[8] (a) W. Du, X. Nan, M. Li, Rev. Colomb. Entomol. 2012, 38, 81.
| 1:CAS:528:DC%2BC38XhslOitb%2FN&md5=10b7debb426cbdc2055bc0a340484dffCAS |
(b) M.-L. Li, J. Cui, R.-H. Qin, J.-M. Gao, Y.-B. Zhang, X.-R. Guo, W. Zhang, Heterocycles 2007, 71, 1155.
| Crossref | GoogleScholarGoogle Scholar |
[9] G. F. Browne, R. B. Johns, K. R. Markham, J. Chem. Soc. 1961, 3000.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XhvVShsQ%3D%3D&md5=3736f2cd5d04cce62f06f778572c4027CAS |
[10] L. A. Porter, Chem. Rev. 1967, 67, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXltVyktb4%3D&md5=323d9deeb03898ad184f0802d6457d0fCAS | 4859924PubMed |
[11] (a) M. J. McKay, H. M. Nguyen, ACS Catal. 2012, 2, 1563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1SmtLo%3D&md5=cbbe0683522786a7255076cc99caca37CAS | 22924154PubMed |
(b) A. M. Szpilman, E. M. Carreira, Org. Lett. 2009, 11, 1305.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Desmares, D. Lefebvre, G. Renevret, C. L. Drian, Helv. Chim. Acta 2001, 84, 880.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. Toshima, K. Tatsuta, Chem. Rev. 1993, 93, 1503.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Yang, X. Zhang, B. Yu, Nat. Prod. Rep. 2015, 32, 1331.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Okada, T. Mukae, K. Okajima, M. Taira, M. Fujita, H. Yamada, Org. Lett. 2007, 9, 1573.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. Stork, G. Kim, J. Am. Chem. Soc. 1992, 114, 1087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVKlsLc%3D&md5=819d182c56b17b599580ba0a96c3fad2CAS |
[13] (a) H. Kim, H. Men, C. Lee, J. Am. Chem. Soc. 2004, 126, 1336.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Cgtg%3D%3D&md5=bf106d7043e59e2453da48482b9d0c1eCAS | 14759180PubMed |
(b) R. L. Halcomb, S. J. Danishefsky, J. Am. Chem. Soc. 1989, 111, 6661.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Okada, N. Asakura, M. Bando, Y. Ashikaga, H. Yamada, J. Am. Chem. Soc. 2012, 134, 6940.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Zhu, R. R. Schmidt, Angew. Chem., Int. Ed. 2009, 48, 1900.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. J. Jensen, J. Chem. Soc., Perkin Trans. 1 2002, 2219.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Tamura, H. Abe, A. Matsuda, S. Shuto, Angew. Chem., Int. Ed. 2003, 42, 1021.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) Y. Geng, A. Kumar, H. M. Faidallah, H. A. Albar, I. A. Mhkalid, R. R. Schmidt, Angew. Chem., Int. Ed. 2013, 52, 10089.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOhtLzK&md5=f061d8bea415ffdfce765b800b1f222fCAS |
(b) B. R. Balthaser, F. McDonald, Org. Lett. 2009, 11, 4850.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) G. Fernandez-Lorente, J. M. Palomo, J. Cocca, C. Mateo, P. Moro, M. Terreni, R. Fernandez-Lafuenteb, J. M. Guisan, Tetrahedron 2003, 59, 5705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1ens7Y%3D&md5=f3840a5a08bc720109819742a4c0e700CAS |
(b) R. R. Schmidt, J. Michel, Angew. Chem., Int. Ed. Engl. 1980, 19, 731.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Kerékgyártó, J. P. Kamerling, J. B. Bouwstra, J. F. G. Vliegenthart, A. Lipták, Carbohydr. Res. 1989, 186, 51.
| Crossref | GoogleScholarGoogle Scholar | 2720704PubMed |
[18] (a) P. Zhang, K. Ng, C.-C. Ling, Org. Biomol. Chem. 2010, 8, 128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFekurnJ&md5=511ffc3c71196759ea30d7c94109f31dCAS | 20024143PubMed |
(b) A. W. Chapman, J. Chem. Soc., Trans. 1925, 127, 1992.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. H. Wheeler, F. Roman, M. V. Santiago, F. Quiles, Can. J. Chem. 1969, 47, 503.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) J. Yang, C. Cooper-Vanosdell, E. A. Mensah, H. M. Nguyen, J. Org. Chem. 2008, 73, 794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1arsA%3D%3D&md5=f5aaac1284ae37c3b82582e50b7f16b6CAS | 18184010PubMed |
(b) E. A. Mensah, J. M. Azzarelli, H. M. Nguyen, J. Org. Chem. 2009, 74, 1650.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Li, X. Yang, Y. Liu, C. Zhu, Y. Yang, B. Yu, Chem. – Eur. J. 2010, 16, 1871.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. R. Mootoo, P. Konradsson, U. Udodong, B. Fraser-Reid, J. Am. Chem. Soc. 1988, 110, 5583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltFSkur4%3D&md5=b03ba1a60e812cd9cbd2e94138af2539CAS |
[21] (a) H. Li, B. Meng, S. M. Mahurin, S.-H. Chai, K. M. Nelson, D. C. Baker, H. Liu, S. Dai, J. Mater. Chem. A 2015, 3, 20913.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKnsb%2FE&md5=8cec7ecf12ad54375c170ad7d61881a2CAS |
(b) M. A. Fernández-Herrera, H. López-Muñoz, J. M. V. Hernández-Vázquez, M. López-Dávila, S. Mohan, M. L. Escobar-Sánchez, L. Sánchez-Sánchez, B. M. Pinto, J. Sandoval-Ramírez, Eur. J. Med. Chem. 2011, 46, 3877.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) H. Satoh, H. S. Hansen, S. Manabe, W. F. van Gunsteren, P. H. Hünenberger, J. Chem. Theory Comput. 2010, 6, 1783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGitLk%3D&md5=4ebe7864e9cf11e8edfd450c78a54c38CAS | 26615839PubMed |
(b) D. Crich, H. Xu, J. Org. Chem. 2007, 72, 5183.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) M. Adinolfi, G. Barone, A. Iadonisi, M. Schiattarella, Org. Lett. 2003, 5, 987.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVygurs%3D&md5=1b83707fb560a8266129406115e3fccaCAS | 12659555PubMed |
(b) J. Khamsi, R. A. Ashmus, N. S. Schocker, K. Michael, Carbohydr. Res. 2012, 357, 147.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. Blunt, M. Munro, W. Swallow, Aust. J. Chem. 1979, 32, 1339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlvFWnsbo%3D&md5=2b9116fcafc6a854e83622718cd2f387CAS |
[25] T. Okuda, T. Yoshida, Chem. Pharm. Bull. 1967, 15, 1955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkvVOhs74%3D&md5=7ddd25a1337c6627077ef2b5426ee141CAS | 5590701PubMed |
[26] J. R. Fletcher, R. B. Hall, E. L. Richards, S. N. Slater, J. Chem. Soc. 1954, 0368–1769, 1953.
| Crossref | GoogleScholarGoogle Scholar |