A New Fluorometric Method for the Determination of Oxaliplatin Based on Cucurbit[7]uril Supramolecular Interaction
YinXia Chang A B , XueChao Duan A , XiangMei Zhang A , Fan Liu A and LiMing Du AA School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China.
B Corresponding author. Email: chyinxia@163.com
Australian Journal of Chemistry 70(6) 677-682 https://doi.org/10.1071/CH16398
Submitted: 7 July 2016 Accepted: 23 September 2016 Published: 21 October 2016
Abstract
This paper proposed new competitive methods for fluorescence detection of the anti-cancer drug oxaliplatin. The methods were based on the competitive reaction of palmatine (PAL)/berberine (BER)/coptisine (COP) with oxaliplatin for the occupancy of cucurbit[7]uril (CB[7]) cavities. The results showed that the fluorescence intensity of PAL, BER, and COP regularly increased upon addition of CB[7] until a certain amount of oxaliplatin was added, at which stage the fluorescence intensity of the system quenched. Using the CB[7]–PAL, CB[7]–BER, and CB[7]–COP systems, linear ranges in the detection of oxaliplatin of 0.005–1.75, 0.010–1.50, and 0.020–1.05 μg mL–1, with detection limits of 2, 3, and 7 ng mL–1, respectively, were obtained. These results suggest that cucurbit[7]uril is a promising drug carrier for delivering and monitoring targeted oxaliplatin, with improved anti-tumour efficacy and reduced toxicity in normal tissues.
References
[1] S. E. Sherman, S. J. Lippard, Chem. Rev. 1987, 87, 1153.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsVKlsr4%3D&md5=900a7692bf855d328d0d375059426485CAS |
[2] B. Stordal, N. Pavlakis, R. Davey, Cancer Treat. Rev. 2007, 33, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsF2rtr4%3D&md5=700de58aa86196f485755abc205eb750CAS | 17383100PubMed |
[3] C. Yang, H. Z. Liu, X. F. Zhong, W. D. Lu, BMC Biotechnol. 2011, 11, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Sluro%3D&md5=fa0f1531efcbe8f876f353b46d8055dfCAS | 21401960PubMed |
[4] B. Han, R. Xu, Y. Shi, H. Luo, X. Xiang, Y. Li, L. Zhang, T. Lin, Y. He, Chin. J. Clin. Oncol. 2007, 4, 397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivF2is7Y%3D&md5=304d645a11275363a065025e220953f0CAS |
[5] R. Ficarra, M. L. Calabro, P. Cutroneo, S. Tommasini, S. Melardi, M. Semreen, S. Furlanetto, P. Ficarra, G. Altavilla, J. Pharm. Biomed. Anal. 2002, 29, 1097.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFWju7g%3D&md5=3636ccda40d678c1d8effa59b981561dCAS | 12110395PubMed |
[6] J. G. Morrison, P. White, S. McDougall, J. W. Firth, S. G. Woolfrey, M. A. Graham, D. Greenslade, J. Pharm. Biomed. Anal. 2000, 24, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFaqt7c%3D&md5=14b1a599aee55a02362009f36b9642e9CAS | 11108533PubMed |
[7] U. Franzen, T. T. T. N. Nguyen, C. Vermehren, B. Gammelgaard, J. Østergaard, J. Pharm. Biomed. Anal. 2011, 55, 16.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFyqtrk%3D&md5=438dc0e47c595fc03c1bb98cb1a62cb6CAS | 21282028PubMed |
[8] K. Żamojć, W. Wiczk, B. Zaborowski, D. Jacewicz, L. Chmurzyński, J. Fluoresc. 2014, 24, 713.
| Crossref | GoogleScholarGoogle Scholar | 24337873PubMed |
[9] A. Gomes, E. Fernandes, J. L. F. C. Lima, J. Fluoresc. 2006, 16, 119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlansLg%3D&md5=073c858b8b7d0b21a82917cb1eb794fbCAS | 16477509PubMed |
[10] S. Santra, K. M. Ang, R. Tapec, W. H. Tan, Anal. Chem. 2001, 73, 4988.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Ojtb8%3D&md5=ad0318044c6df248f0ee344d985b2275CAS | 11681477PubMed |
[11] H. Cong, X. L. Ni, X. Xiao, Y. Huang, Q. J. Zhu, S. F. Xue, Z. Tao, L. F. Lindoy, G. We, Org. Biomol. Chem. 2016, 14, 4335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVaktbk%3D&md5=79ad67b4b34f64a287e80d2982419ac9CAS | 26991738PubMed |
[12] A. L. Koner, W. M. Nau, Supramol. Chem. 2007, 19, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFSrsb8%3D&md5=7ed8df1ce3f84e16c7fe1b6df31d9964CAS |
[13] C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, Anal. Chem. 1998, 70, 2651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVWrtLc%3D&md5=5ba69c2ddf2b0b90cf7d0950f6cef1e5CAS | 21644785PubMed |
[14] R. Wang, L. Yuan, D. H. Macartney, Chem. Commun. 2005, 47, 5867.
| Crossref | GoogleScholarGoogle Scholar |
[15] T. Plakhotnik, E. A. Donley, U. P. Wild, Annu. Rev. Phys. Chem. 1997, 48, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslGgsLo%3D&md5=f0cd0e664619151b6f0ea8d43644d85eCAS | 15012444PubMed |
[16] S. L. Hart, R. I. Haines, A. Decken, B. D. Wagner, Inorg. Chim. Acta 2009, 362, 4145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Sqtrk%3D&md5=45263c35bf732b8268221fb69369501bCAS |
[17] L. B. Lu, D. H. Yu, Y. Q. Zhang, Q. J. Zhu, S. F. Xue, Z. Tao, J. Mol. Struct. 2008, 885, 70.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFWis7s%3D&md5=5a626cd2eb62d253b891f8f6ae033abbCAS |
[18] J. del Barrio, P. N. Horton, D. Lairez, G. O. Lloyd, C. Toprakcioglu, O. A. Scherman, J. Am. Chem. Soc. 2013, 135, 11760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCmu7%2FO&md5=7eeac006b2d90ae90a40b38ace76c2dbCAS | 23879174PubMed |
[19] L. Yuan, R. B. Wang, D. H. Macartney, Tetrahedron: Asymmetry 2007, 18, 483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVOjs7k%3D&md5=a5b2053a178b61f4566b463fb8fa2f6dCAS |
[20] Z. S. Hou, Y. B. Tan, K. Kim, Q. F. Zhou, Polymer 2006, 47, 742.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFOqsA%3D%3D&md5=9538c3bdcb1015fd9539eeeba2731694CAS |
[21] H. J. Buschmann, E. Cleve, L. Mutihac, E. Schollmeyer, Microchem. J. 2000, 64, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1KmtLw%3D&md5=a10db4a709211bce005e6f75972a7d8eCAS |
[22] V. N. Sueldo Occello, A. V. Veglia, Anal. Chim. Acta 2011, 689, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Ghu7s%3D&md5=cebe5b2d3591455a8e865495e2419a78CAS | 21338763PubMed |
[23] M. Megyesi, L. Biczók, I. Jablonkai, J. Phys. Chem. C 2008, 112, 3410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Grsbw%3D&md5=e14a113ee1660728333e6b1049f684b9CAS |
[24] L. Isaacs, Acc. Chem. Res. 2014, 47, 2052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlKgurs%3D&md5=0516c288f85f6831d9a32fea600bca53CAS | 24785941PubMed |
[25] N. Saleh, A. Khaleel, H. Al-Dmour, B. al-Hindawi, E. Yakushenko, J. Therm. Anal. Calorim. 2013, 111, 385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1WrsQ%3D%3D&md5=226836bb6e12487861a5a5851b461b8aCAS |
[26] Y. X. Chang, Y. Q. Qiu, L. M. Du, C. F. Li, M. Guo, Analyst 2011, 136, 4168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ags7bF&md5=72b683336a138512ea6fff57282bd440CAS | 21858296PubMed |
[27] S. W. Heo, T. S. Choi, K. M. Park, Y. H. Ko, S. B. Kim, K. Kim, H. I. Kim, Anal. Chem. 2011, 83, 7916.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CqtrbP&md5=bcd8b8892add45ceaf6251da05a57290CAS | 21923148PubMed |
[28] S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 15959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFalu7rI&md5=875130eed3cd5b3afafff7ca991f44f5CAS | 16277540PubMed |
[29] D. S. Guo, V. D. Uzunova, K. I. Assaf, A. I. Lazar, Y. Liu, W. M. Nau, Supramol. Chem. 2016, 28, 384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFansLjL&md5=81e88e82cf24b232273d72e80e7b43f6CAS |
[30] K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim, Chem. Soc. Rev. 2007, 36, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKltbw%3D&md5=7896b23fa181b52361afa02722955aedCAS | 17264929PubMed |
[31] D. Shetty, J. K. Khedkar, K. M. Parkad, K. Kim, Chem. Soc. Rev. 2015, 44, 8747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1SitbbI&md5=d730555475bda05af00b7423eef10bd5CAS | 26434388PubMed |
[32] Z. Miskolczy, L. Biczók, H. Görner, J. Photochem. Photobiol., A 2009, 207, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWlu7zP&md5=eea69072ba585c3280458ca28acadb00CAS |
[33] N. K. Petrov, D. A. Ivanov, D. V. Golubkov, S. P. Gromov, M. V. Alfimov, Chem. Phys. Lett. 2009, 480, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2htLvP&md5=2cc054477b055d4ffd78017dde43dad3CAS |
[34] F. Constabel, K. E. Geckeler, Tetrahedron Lett. 2004, 45, 2071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlOqs7Y%3D&md5=bd69d8f6b426831a7edf49b2a508ee54CAS |
[35] G. Q. Wang, Y. F. Qin, L. M. Du, Y. L. Fu, Aust. J. Chem. 2013, 66, 701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1ygsbY%3D&md5=a5f218001502cdec9d827f35cd39992aCAS |
[36] Y. J. Jeon, S. Y. Kim, Y. H. Ko, S. Sakamoto, K. Yamaguchi, K. Kim, Org. Biomol. Chem. 2005, 3, 2122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFaquro%3D&md5=3131144354b5601555f2891508e1d98cCAS | 15917899PubMed |
[37] A. Suvitha, N. S. Venkataramanan, H. Mizuseki, Y. Kawazoe, N. Ohuch, J. Inclusion Phenom. Macrocyclic Chem. 2010, 66, 213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Kju7w%3D&md5=354fe62730034d91a596d5efdc052b23CAS |
[38] J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc. 2000, 122, 540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Gjtw%3D%3D&md5=02172d95c7a429aa2a1463c231a49bceCAS |