Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Cope Rearrangement in Bicyclo[5.1.0]octa-2,5-diene and its Mono- and Di-Hetero Analogues: A DFT Study

Priya Yadav A , Shilpa Yadav A , Asha Gurjar B and Raj K. Bansal A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, The IIS University, Jaipur 302020, India.

B Department of Chemistry, University of Rajasthan, Jaipur 302004, India.

C Corresponding author. Email: bansal56@gmail.com

Australian Journal of Chemistry 70(6) 683-690 https://doi.org/10.1071/CH16488
Submitted: 27 August 2016  Accepted: 23 September 2016   Published: 24 October 2016

Abstract

The Cope rearrangements of bicyclo[5.1.0]octa-2,5-diene and its 4-hetero-(aza/oxa/phospha) and 4,8-dihetero analogues were investigated using density functional theory at the B3LYP/6–31+G* level in gas phase. The rearrangements of bicyclo[5.1.0]octa-2,5-diene and its symmetrical 4,8-dihetero analogues followed a concerted mechanism involving synchronous transition states. In other cases, although a concerted mechanism was observed, asynchronous transition states were involved. In the case of bicyclo[5.1.0]octa-2,5-diene, a degenerate Cope rearrangement was expected to occur at room temperature (25°C) due to a low free activation energy (ΔG = 14.46 kcal mol–1). However, under similar conditions, the rearrangement of 4,8-dioxabicyclo[5.1.0]octa-2,5-diene was much slower (ΔG = 23.85 kcal mol–1) and the 4,8-diaza- and diphospha analogues did not undergo Cope rearrangement. The Cope rearrangements of 4-phospha-, 8-aza-, 8-aza-4-oxa-, 8-aza-4-phospha-, and 8-oxa-4-phospha-bicyclo[5.1.0]octa-2,5-dienes were exergonic and were expected to occur spontaneously to form the corresponding products. In contrast, rearrangement of 8-oxabicyclo[5.1.0]octa-2,5-diene, though exergonic, was accompanied by a decrease in entropy, due to which Cope rearrangement would occur much more slowly and a mixture of both valence isomers would be formed. The Cope rearrangements of 4-aza-, 4-oxa-, 4-aza-8-oxa-, 8-phospha-, 4-aza-8-phospha-, 4-oxa-8-phospha-, and 4,8-diphospha-bicyclo[5.1.0]octa-2,5-dienes were endergonic; consequently either no Cope rearrangement would take place or it would occur sluggishly.


References

[1]  E. Vogel, R. Erb, Angew. Chem., Int. Ed. Engl. 1962, 1, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  E. Vogel, Angew. Chem., Int. Ed. Engl. 1963, 2, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  W. von E. Doering, W. R. Roth, Angew. Chem., Int. Ed. Engl. 1963, 2, 115.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. Hudlicky, J. W. Reed, in Comprehensive Organic Synthesis (Eds B. M. Trost, I. Fleming, L. A. Paquette) 1991, Vol. 5, Ch. 8.1, pp. 899–970 (Pergamon Press: Oxford). 10.1016/B978-0-08-052349-1.00142-6

[5]  E. Piers, in Comprehensive Organic Synthesis (Eds B. M. Trost, I. Fleming, L. A. Paquette) 1991, Vol. 5, Ch. 8.2, pp. 971–988 (Pergamon Press: Oxford). 10.1016/B978-0-08-052349-1.00143-8

[6]  P. Tang, Y. Qin, Synthesis 2012, 44, 2969.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKls7vF&md5=a8018aea778d7cdb5675701b8735c7e1CAS |

[7]  H. M. L. Davies, J. R. Denton, Chem. Soc. Rev. 2009, 38, 3061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12ht7rO&md5=05b3f38a32be5839d903539de2bfacebCAS |

[8]  E. L. Stogryn, S. J. Brois, J. Org. Chem. 1964, 29, 1275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktVCiuro%3D&md5=4f32056190b7d9cbbd49b5192d2be1f7CAS |

[9]  R. A. Braun, J. Org. Chem. 1963, 28, 1383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVyrtb4%3D&md5=a91939d5cbdd4828b9bbb5a972876f53CAS |

[10]  K. Hafner, C. König, Angew. Chem., Int. Ed. Engl. 1963, 2, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  W. Lwowski, T. J. Maricich, T. W. Mattingly, J. Am. Chem. Soc. 1963, 85, 1200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXotFChsw%3D%3D&md5=ec99fe48a4b080c64c5b8a8c6e0c6b17CAS |

[12]  E. Vogel, Angew. Chem. 1960, 72, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXktl2rsQ%3D%3D&md5=9e581b18b5cddc4828a5652281e42825CAS |

[13]  E. Vogel, K. H. Ott, K. Gajek, Justus Liebigs Ann. Chem. 1961, 644, 172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XnsVGi&md5=9d1f6e9e3b25f48455db601643df96d8CAS |

[14]  E. Vogel, Angew. Chem., Int. Ed. Engl. 1963, 2, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. M. Brown, B. T. Golding, J. J. Stofko, J. Chem. Soc., Chem. Commun. 1973, 319b.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. M. Brown, B. T. Golding, J. J. Stofko, J. Chem. Soc., Perkin Trans. 2 1978, 2, 436.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. P. Schneider, J. J. Rebell, J. Chem. Soc., Chem. Commun. 1975, 283a.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. P. Schneider, Angew. Chem., Int. Ed. Engl. 1975, 14, 707.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  M. P. Schneider, A. Rau, J. Am. Chem. Soc. 1979, 101, 4426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlvFamsLo%3D&md5=175c5c8857a852c2b886617fa3ea39dfCAS |

[20]  D. Sperling, H. U. Reissig, J. Fabian, Liebigs Ann. 1997, 1997, 2443.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. Zora, I. Özkan, M. F. Danisman, J. Mol. Struct.: THEOCHEM 2003, 636, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVGqs78%3D&md5=de067820c865840536d7ea3b6e9ad764CAS |

[22]  I. Özkan, M. Zora, J. Org. Chem. 2003, 68, 9635.
         | Crossref | GoogleScholarGoogle Scholar | 14656088PubMed |

[23]  M. Zora, J. Org. Chem. 2005, 70, 6018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslOmtr4%3D&md5=a7026056803ab36071f832bb9863046aCAS | 16018698PubMed |

[24]  W. von E. Doering, W. R. Roth, Tetrahedron 1963, 19, 715.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  H. Günther, J. B. Pawliczek, J. Ulmen, W. Grimme, Angew. Chem., Int. Ed. Engl. 1972, 11, 517.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  H. Klein, W. Kursawa, W. Grimme, Angew. Chem., Int. Ed. Engl. 1973, 12, 580.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  H. Klein, W. Grimme, Angew. Chem., Int. Ed. Engl. 1974, 13, 672.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  O. Wiest, K. A. Black, K. N. Houk, J. Am. Chem. Soc. 1994, 116, 10336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSisr0%3D&md5=c2f93d496e1617a137ce086fb624c1faCAS |

[29]  H. Jiao, P. R. Schleyer, Angew. Chem., Int. Ed. Engl. 1995, 34, 334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFCitr8%3D&md5=10ac9348433d886fb374e59426a1041eCAS |

[30]  W. von E. Doering, V. G. Toscano, G. H. Beasley, Tetrahedron 1971, 27, 5299.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  D. A. Hrovat, B. R. Beno, H. Lange, H.-Y. Yoo, K. N. Houk, W. T. Borden, J. Am. Chem. Soc. 1999, 121, 10529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFCkt7c%3D&md5=2173f8120c08522b0004812528574766CAS |

[32]  D. A. Hrovat, J. Chen, K. N. Houk, W. T. Borden, J. Am. Chem. Soc. 2000, 122, 7456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVGhsb0%3D&md5=e205cbf9d70e3448e3b9575869b51375CAS |

[33]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f3f6bac3f3f06397785c39408dfcd392CAS |

[34]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1446c2427b0599ea3e79a7334c6afa9cCAS |

[35]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven Jr, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.05 2003 (Gaussian, Inc.: Wallingford CT).

[36]  C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVahtbk%3D&md5=d653910b8f837dc0c71d433ce1b59b78CAS |

[37]  C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2rt78%3D&md5=a3bd1120a7e50e4e25d0dc524b198b08CAS |

[38]  A. E. Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsVOhu7w%3D&md5=51fb02bf5d8c8ed5b0e9fb07b6684785CAS |

[39]  R. F. W. Bader, Atoms in Molecules – A Quantum Theory 1990 (Oxford University: Oxford).

[40]  R. Ditchfield, Mol. Phys. 1974, 27, 789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkvVektrk%3D&md5=c69703465b032380e7b846fd59c24c89CAS |

[41]  Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. R. Schleyer, Chem. Rev. 2005, 105, 3842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGisrbF&md5=53e96f229661c67e5260de8c1f081f29CAS | 16218569PubMed |

[42]  E. Steiner, P. W. Fowler, L. W. Jenneskens, Angew. Chem., Int. Ed. 2001, 40, 362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslahuw%3D%3D&md5=78e014fcf18d1229b853b13870f6d5cdCAS |

[43]  R. H. Mitchell, Chem. Rev. 2001, 101, 1301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslagsLc%3D&md5=5f10bf1959db650b06be646d04955594CAS | 11710222PubMed |

[44]  P. R. Schleyer, H. J. Jiao, N. J. R. E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFCis7Y%3D&md5=0e885a354a79b6cb41e3ffd12241e2baCAS |

[45]  P. R. Schleyer, H. J. Jiao, N. J. R. E. Hommes, V. G. Malkni, O. L. Malkina, J. Am. Chem. Soc. 1997, 119, 12669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1Kjtg%3D%3D&md5=9f9b2c9208b9f2640d9be42946d35504CAS |