Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterisation of Hierarchically Porous HZSM-5 as Catalysts for the Synthesis of 2,3,5-Trimethyl-1,4-benzoquinone

Yu Shen A , Fumin Wang A B , Chaoqun Yang A and Xubin Zhang A B
+ Author Affiliations
- Author Affiliations

A School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

B Corresponding authors. Email: wangfumin@tju.edu.cn; tjzxb@tju.edu.cn

Australian Journal of Chemistry 70(6) 691-698 https://doi.org/10.1071/CH16392
Submitted: 5 July 2016  Accepted: 3 October 2016   Published: 31 October 2016

Abstract

Hierarchical HZSM-5 were synthesised by controlled desilication in alkaline medium and characterised by field-emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy, inductively coupled plasma–atomic emission spectrometry, N2 adsorption–desorption, and Fourier transform infrared spectroscopy. The catalytic performance of HZSM-5 towards the selective oxidation of 2,3,6-trimethylphenol by H2O2 was evaluated. Recyclability tests were also carried out. The results showed that 2,3,5-trimethyl-1,4-benzoquinone was produced in high yields (i.e. 90 %), corresponding to a 2,3,6-trimethylphenol percentage of 98 %. The N2 adsorption–desorption and XRD studies suggested that mesopores with an average size of 5 nm were produced and that the structural character of HZSM-5 was preserved after desilication. Transmission electron microscopy analysis of the spent catalyst indicated good stability of the hierarchical structure. The Fourier transform infrared spectroscopy studies revealed the development of acid sites. The combined results suggested that the nature of the solvent, intrinsic acidity, and shape selectivity of the hierarchical structure of the catalyst ensured high catalytic properties.


References

[1]  T. Netscher, Vitam. Horm. 2007, 76, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Wlu7g%3D&md5=5ce239a4fb6dae20963dc802bbf6a9e2CAS | 17628175PubMed |

[2]  Z. Bodnar, T. Mallat, A. Baiker, J. Mol. Catal. A: Chem. 1996, 110, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Oms7Y%3D&md5=87b43c9552be15253a6a976b5a9b761bCAS |

[3]  X. J. Meng, Z. H. Sun, S. Lin, M. Yang, X. Y. Yang, J. M. Sun, D. Z. Jiang, F. S. Xiao, S. Y. Chen, Appl. Catal., A 2002, 236, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVGrsro%3D&md5=af2c8fb7ae2bacf73f2c4ed827137c26CAS |

[4]  H. J. Sun, K. Harms, J. Sundermeyer, J. Am. Chem. Soc. 2004, 126, 9550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVSksLY%3D&md5=a0bcb0b7d79342573c7b9f0a2c081b11CAS |

[5]  C. A. Fyfe, G. C. Gobbi, J. Klinowski, J. M. Thomas, S. Ramdas, Nature 1982, 296, 530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xksl2mtbc%3D&md5=e82f152a621385763b5de739583613e5CAS |

[6]  D. H. Olson, W. O. Haag, R. M. Lago, J. Catal. 1980, 61, 390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktFeksLg%3D&md5=2370b1bd83181d0ddbaca17dd93fb8a1CAS |

[7]  C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc. 2000, 122, 7116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFGrsbc%3D&md5=c249a4694af913a9a5b2780a547e8578CAS |

[8]  C. T. Kresge, L. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xms1entrs%3D&md5=b3ac98935dd6e4098591024a7485a1c7CAS |

[9]  P. Selvam, S. K. Bhatia, C. G. Sonwane, Ind. Eng. Chem. Res. 2001, 40, 3237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFSisLs%3D&md5=7011499ff9864e005340fc73264ca276CAS |

[10]  D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslKnsbY%3D&md5=7df0ba523a84e37d0e2002429253569fCAS |

[11]  E. P. Reddy, L. Davydov, P. G. Smirniotis, J. Phys. Chem. B 2002, 106, 3394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1ynsbY%3D&md5=def84c44dcaaf91adf42c0397e607bfaCAS |

[12]  Y. W. Chen, Y. H. Lu, Ind. Eng. Chem. Res. 1999, 38, 1893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlKrsbk%3D&md5=78fb26d425f4a4aaf678f804278354ddCAS |

[13]  N. N. Trukhan, V. N. Romannikov, E. A. Paukshtis, A. N. Shmakov, O. A. Kholdeeva, J. Catal. 2001, 202, 110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls12gsbg%3D&md5=96edbdd3c623d5596fe54efff9a38bcdCAS |

[14]  O. A. Kholdeeva, M. S. Mel’gunov, A. N. Shmakov, N. N. Trukhan, V. V. Kriventsov, V. I. Zaikovskii, M. E. Malyshev, V. N. Romannikov, Catal. Today 2004, 91–92, 205.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. Selvaraj, Catal. Sci. Technol. 2014, 4, 2674.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVamsL%2FK&md5=23522b53e05abe9802eae3e265f97f51CAS |

[16]  C. Sun, J. M. Du, J. Liu, Y. S. Yang, N. Ren, W. Shen, H. L. Xu, Y. Tang, Chem. Commun. 2010, 46, 2671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVCms78%3D&md5=3c6ab0f34059311e38657922f91628a9CAS |

[17]  J. C. Groen, W. D. Zhu, S. Brouwer, S. J. Huynink, F. Kapteijn, J. A. Moulijn, J. Pérez-Ramírez, J. Am. Chem. Soc. 2007, 129, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlantr3K&md5=baa0bb8b9a9d43ea3cb5024e811e0d70CAS | 17212415PubMed |

[18]  C. Saux, M. S. Renzini, S. Gomez, L. B. Pierella, Ind. Eng. Chem. Res. 2014, 53, 11276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCjsrvN&md5=92c87383d40fc495232769e05fb871ddCAS |

[19]  J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Pérez-Ramírez, Chem. – Eur. J. 2005, 11, 4983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVKhtb4%3D&md5=6ed95f638b44a1bddfc250ce461615aaCAS | 15968702PubMed |

[20]  M. Pimsuta, A. Neramittagapong, S. Prayoonpokarach, J. Wttayakun, Int. J. Chem. Eng. Appl. 2012, 3, 86.
         | 1:CAS:528:DC%2BC3sXhs1WjsL3J&md5=9e3c55aacb3e36c6c41c27eb1a46a4feCAS |

[21]  J. C. Groen, L. A. A. Peffer, J. Pérez-Ramírez, Microporous Mesoporous Mater. 2003, 60, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlyrt7c%3D&md5=10abc3b1b03d2ff0a23dd04f45cc58dcCAS |

[22]  J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Pérez-Ramírez, Colloids Surf., A 2004, 241, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtF2hu7o%3D&md5=c4f715639eb469ba99e663a14bc14d78CAS |

[23]  J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Pérez-Ramírez, Microporous Mesoporous Mater. 2004, 69, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVGms7s%3D&md5=9374838589e532864057bdb54d1812cfCAS |

[24]  N. Chu, J. Yang, C. Li, J. Cui, Q. Zhao, X. Yin, J. Lu, J. Wang, Microporous Mesoporous Mater. 2009, 118, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFahu7%2FO&md5=de7e42121b2d73b0860be5a023a13b24CAS |

[25]  Y. Fang, H. Hu, J. Am. Chem. Soc. 2006, 128, 10636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsF2gsrg%3D&md5=07cad86423f91c9ff389b5aa2b2e5ee3CAS | 16910631PubMed |

[26]  S. C. Larsen, J. Phys. Chem. C 2007, 111, 18464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KisLfL&md5=d3a1a4769d1ec73ba65909eba8164a7fCAS |

[27]  A. Čimek, B. Subotić, I. Šmit, A. Tonejc, R. Aiello, F. Crea, A. Nastro, Microporous Mater. 1997, 8, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. Zecchina, S. Bordiga, G. Spoto, L. Marchese, G. Petrini, G. Leofanti, M. Padovan, J. Phys. Chem. 1992, 96, 4991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1Orsrw%3D&md5=9465584620709f6f93107d32ea0e479aCAS |

[29]  O. A. Kholdeeva, O. V. Zalomaeva, A. N. Shmakov, M. S. Melgunov, A. B. Sorokin, J. Catal. 2005, 236, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKmur7F&md5=dd2399618514b06dd0f6201ab865b7a6CAS |

[30]  M. Selvaraj, M. Kandaswamy, D. W. Park, C. S. Ha, Catal. Today 2010, 158, 377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2kt77P&md5=271ba6de8dbc0d02801a43bd8728ba2fCAS |

[31]  M. Selvaraj, B. H. Kim, T. G. Lee, Chem. Lett. 2005, 34, 1290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGmu7fP&md5=c0e882ecf330fe74974c6e9478f34c0fCAS |

[32]  T. Maschmeyer, F. Rey, G. Sankar, J. M. Thomas, Nature 1995, 378, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlSmt7Y%3D&md5=e9a6bd4401987a39f596781dfc6342f9CAS |

[33]  O. A. Kholdeeva, I. D. Ivanchikova, M. Guidotti, N. Ravasio, Green Chem. 2007, 9, 731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFyntLc%3D&md5=dd0e0eb9953c223cde1704c34047f722CAS |

[34]  O. V. Zalomaeva, N. N. Trukhan, I. D. Ivanchikova, A. A. Panchenko, E. Roduner, E. P. Talsi, A. B. Sorokin, V. A. Rogov, O. A. Kholdeeva, J. Mol. Catal. A: Chem. 2007, 277, 185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Smsb%2FN&md5=0688e2f5156dea42205fd66ee0b39392CAS |

[35]  O. V. Zalomaeva, O. A. Kholdeeva, A. B. Sorokin, Green Chem. 2006, 8, 883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCiu7rJ&md5=8d55480bbec9edb18954c7dfec9ce4a4CAS |

[36]  J. Zhou, Z. Hua, X. Cui, Z. Ye, F. Cui, J. Shi, Chem. Commun. 2010, 46, 4994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFentr4%3D&md5=d10f6dac5639ecb0e27bde11f510b01eCAS |

[37]  Y. Li, W. Liu, M. Wu, Z. Yi, J. Zhang, J. Mol. Catal. A: Chem. 2007, 261, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlagsrnI&md5=77998968ae1b68a54cdc7df64cb35408CAS |

[38]  M. Selvaraj, S. B. Parkb, J. M. Kimb, Dalton Trans. 2014, 43, 958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWltbnK&md5=7a30dfc65768db71e0d5e9d9666b14fdCAS | 24158466PubMed |

[39]  P. T. Tanev, M. Chibwe, J. Pinnavaia, Nature 1994, 368, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivVWnsL8%3D&md5=48de7770f0181e7e2ee568b0e8927d22CAS | 8127366PubMed |

[40]  S. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, F. Mizukami, Science 2002, 295, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVeqsg%3D%3D&md5=cca07052db194f25822048b08f69cd6dCAS |

[41]  D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci, R. Vignola, Angew. Chem., Int. Ed. 2000, 39, 4321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFCgtrY%3D&md5=bf02c7d9e0a65fa477ac39b547cbf344CAS |