Oxidative N-Dealkylation of Tertiary Amines with Tetraethylammonium Periodate Catalyzed by Metal Complexes
Daisy Bhat A C and Nidhi Sharma BA R. D. Foundation Group of Institutions, NH-58, Kadrabad, Modinagar Ghaziabad, Utter Pradesh 201204, India.
B Bhagwan Parshuram Institute of Technology, Sector 17 Rohini, Delhi 110085, India.
C Corresponding author. Email: daisybhat@yahoo.co.in
Australian Journal of Chemistry 70(3) 233-236 https://doi.org/10.1071/CH16200
Submitted: 28 March 2016 Accepted: 28 June 2016 Published: 12 August 2016
Abstract
The oxidative N-dealkylation of tertiary amines, N,N-dimethylaniline and N,N-diethylaniline, catalyzed by some sterically hindered FeIII complexes and tetraethylammonium periodate as oxidant gave the corresponding N-dealkylated and mono-oxygenated products in good yields. The presence of electronegative atoms on the catalyst complexes influenced the product yield. The presence of H-atom abstractor 2,6-di-tert-butyl-4-methylphenol did not influence product formation, thereby suggesting that the reaction proceeded predominantly via a one-electron transfer mechanism rather than via hydrogen abstraction. Tetraethylammonium periodate favoured oxygen transfer to the substrate.
References
[1] R. E. McMohan, J. Am. Pharm. Assoc. 1947, 55, 267.[2] D. H. R. Barton, R. H. Hesse, G. W. Kirby, Proc. Chem. Soc. 1963, 267.
| 1:CAS:528:DyaF2cXmt1Knsw%3D%3D&md5=82ff8767127d14f05ea3bc1564ca19e7CAS |
[3] L. Que, R. Y. N. Ho, Chem. Rev. 1996, 96, 2607.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1GmsrY%3D&md5=f1ae9a5e135190ff02221d157233da98CAS | 11848838PubMed |
[4] S. C. Trewick, T. F. Henshaw, R. P. Hausinger, T. Lindahl, B. Sedqwick, Nature 2002, 419, 174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvV2qsrk%3D&md5=72823a4589ddde92c8d582823cfaa673CAS | 12226667PubMed |
[5] J. H. Cooley, E. J. Evain, Synthesis 1989, 1.(and the references therein).
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFersbs%3D&md5=b2bf1f50c13d1359791d02598b171d66CAS |
[6] J. R. Smith, D. N. Mortimer, J. Chem. Soc. Chem. Commun. 1985, 64.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsFGjtrc%3D&md5=5d632633be3a7cf48fef02806e27387dCAS |
[7] Q. Liao, C. J. Xi, Chem. Res. Chin. Univ. 2009, 25, 861.
| 1:CAS:528:DC%2BD1MXhs1Whu7vK&md5=2796c6e9e21d12e6c7ca416238520519CAS |
[8] X. Yang, C. Xi, Y. Jiang, Molecules 2006, 11, 978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVShur0%3D&md5=6912a4388268edb9e95e490b85734322CAS | 18007402PubMed |
[9] D. NarĂ³g, U. Lechowiez, T. Pietryga, A. Sobkowiak, J. Mol. Catal. A: Chem. 2004, 212, 25.
| Crossref | GoogleScholarGoogle Scholar |
[10] P. Comba, S. Kuwata, G. Linti, Chem. Commun. 2006, 2074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlWltLc%3D&md5=efc2c79f499b2774f4a0bee09c258523CAS |
[11] J. Shearer, C. X. Zhang, L. Q. Hatcher, K. D. Karlin, J. Am. Chem. Soc. 2003, 125, 12670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFegtr0%3D&md5=8d6b6d62185a8d1b585af43cddb8e251CAS | 14558790PubMed |
[12] A. N. Eremin, D. I. Metelitsa, React. Kinet. Catal. Lett. 1985, 27, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsF2rurg%3D&md5=8c3d8e8c1a7acf9af6fdc9ae3dc4df96CAS |
[13] L. Horner, E. Schwenk, Justus Liebigs Ann. Chem. 1950, 566, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXjtVSisw%3D%3D&md5=1225bb8d37e1c20bd636d0a48095fcd9CAS |
[14] D. Bhat, Asian Chem. Lett. 2006, 10, 157.
[15] D. D. Agarwal, D. Bhat, Asian Chem. Lett. 2007, 11, 235.
[16] D. D. Agarwal, D. Bhat, J. Porphyrins Phthalocyanines 2015, 19, 1153.
[17] D. D. Agarwal, D. Bhat, J. Porphyrins Phthalocyanines 2016, in press.
[18] D. H. R. Barton, J. Bovin, M. Gastiger, R. S. Morzcki, H. Motherwell, W. S. Motherwell, K. M. Chwartzentrube, J. Chem. Soc., Perkin Trans 1 1986, 947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktl2htL4%3D&md5=8d6834b1905d8cb486e7c38afc7f6d4eCAS |
[19] S. Murata, M. Miura, N. Nomura, J. Chem. Soc., Perkin Trans. 1 1987, 1, 1259.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. Ito, K. Inoue, M. Matsumoto, J. Am. Chem. Soc. 1982, 104, 6450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltlWntA%3D%3D&md5=b086dda52411494085984940e7f4c3f0CAS |
[21] R. P. Hanzlik, R. H. Tullman, J. Am. Chem. Soc. 1982, 104, 2048.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhtlykt7w%3D&md5=0dc0050cbdf29d059001c8199e1d1a33CAS |
[22] T. L. Macdonald, K. Zirvi, L. T. Burka, P Peyman, F. P. Guengerich, J. Am. Chem. Soc. 1982, 2050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhtlykt70%3D&md5=4118f47a028a9565d26c8ca0fb189123CAS |
[23] J. R. Lindsay Smith, D. N. Mortimer, J. Chem. Soc., Perkin Trans 1 1986, 2, 1743.
| Crossref | GoogleScholarGoogle Scholar |
[24] S. Murata, M. Miura, M. Nomura, J. Chem. Soc., Chem. Commun. 1989, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFKksLg%3D&md5=56905e6f7224a1bc3611c0a688a5c83cCAS |
[25] F. P. Guengerich, T. L. Macdonald, Acc. Chem. Res. 1984, 17, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkslCgug%3D%3D&md5=d02d04d0539975a019d2752a2690b104CAS |
[26] F. P. Guengerich, J. Biochem. Mol. Toxicol. 2007, 21, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGjtLrN&md5=151c513a9c5984f98896dcfa62bf0924CAS | 17936929PubMed |
[27] A. I. Vogel, Text Book of Practical Organic Chemistry 1978 (Longman).
[28] V. Krishana, D. D. Agarwal, G. Bhayrappa, R. Rastogi, Indian J. Chem., Sect. A: Inorg., Phys., Theor. Anal. 1998, 37, 918.