Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Preparation of Magnetic Surface-Imprinted Polymer Microspheres with Hydrophilic External Layers for Selective Extraction of Fluoroquinolones from Eggs

Yun-Kai Lv A B , Xue Xiong A , Fang-Fang Zhao A , Meng-Zhe Li A , Mian Wang A and Xiao-Yang Li A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.

B Corresponding author. Email: lvyunkai@hbu.edu.cn

Australian Journal of Chemistry 70(3) 237-244 https://doi.org/10.1071/CH16250
Submitted: 22 April 2016  Accepted: 29 June 2016   Published: 1 August 2016

Abstract

A novel method of one-pot covalently grafting a hydrophilic organic polymer imprinted layer on the surface of magnetic microspheres was developed for the preparation of restricted access materials–molecularly imprinted magnetic microspheres (RAM-MIMMs) with water compatibility and ability to exclude biomacromolecules and selectively enrich analytes. The magnetic nanoparticles were coated with silica gel, modified with vinyl groups, polymerized with the template (enrofloxacin), functional monomer (glycidyl methacrylate, methacrylic acid), and cross-linking agent (ethylene glycol dimethacrylate) in chloroform, and then the hydrophilic surface was formed by a ring-opening reaction. The RAM-MIMMs were characterized by transmission electron microscopy, FT-IR spectroscopy, and adsorption experiments and demonstrated average diameters around 400 nm and a coating thickness in the range of 50 nm. They exhibited high selectivity of the imprinted cavities and hydrophilicity of the external surface with water compatibility and exclusion of biomacromolecules. The RAM-MIMMs were used for the magnetic dispersion microextraction of fluoroquinolones from egg samples with satisfactory results.


References

[1]  A. Rios, M. Zougagh, M. Bouri, Anal. Methods 2013, 5, 4558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlChu7vK&md5=5d2978f7869c227bf3abcaec16938614CAS |

[2]  X. S. Li, G. T. Zhu, Y. B. Luo, B. F. Yuan, Y. Q. Feng, TrAC, Trends Anal. Chem. 2013, 45, 233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1aitb8%3D&md5=3931acdee855d653ad9fc5e1e5d6761cCAS |

[3]  S. H. Huo, X. P. Yan, Analyst 2012, 137, 3445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Git7g%3D&md5=e5633f2a369863d0a1de6370c88c0420CAS | 22695791PubMed |

[4]  J. H. Jung, J. H. Lee, S. Shinkai, Chem. Soc. Rev. 2011, 40, 4464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeitbfO&md5=42c67c5206499c5985bedf34627cd7f6CAS | 21607241PubMed |

[5]  Y. F. Huang, Y. F. Wang, X. P. Yan, Environ. Sci. Technol. 2010, 44, 7908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2qsrrM&md5=edd9eb137bdfccccd60717a033849569CAS | 20866050PubMed |

[6]  L. Sun, X. Sun, X. B. Du, Y. S. Yue, L. G. Chen, H. Y. Xu, Q. L. Zeng, H. Wang, L. Ding, Anal. Chim. Acta 2010, 665, 185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1SntL4%3D&md5=a4967b4be1dad6a2f1ebd870bb7a02c3CAS | 20417329PubMed |

[7]  Y. K. Lv, C. X. Zhao, P. Li, Y. D. He, Z. R. Yang, H. W. Sun, J. Sep. Sci. 2013, 36, 2656.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Cku7bI&md5=1ae04ed3ce3c1ffdbe076e4148031932CAS | 23780651PubMed |

[8]  Y. K. Lv, Y. D. He, X. Xiong, J. Z. Wang, H. Y. Wang, Y. M. Han, New J. Chem. 2015, 39, 1792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOgu7rN&md5=19bf77f1434d56e40d91d14ff4ab8e13CAS |

[9]  L. Zhu, D. Pan, L. Ding, F. Tang, Q. L. Zhang, Q. Liu, S. Z. Yao, Talanta 2010, 80, 1873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslSgur4%3D&md5=ad8272ae75d85b2dff92b5ece80dfc79CAS | 20152426PubMed |

[10]  L. Chen, B. Li, Anal. Methods 2012, 4, 2613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GltrvF&md5=643054d81e3e498b8b8dddbcefc34695CAS |

[11]  R. J. Ansell, K. Mosbach, Analyst 1998, 123, 1611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFKmtbc%3D&md5=e350f0bc166c25f087d4bbf6b11c6c98CAS | 9830174PubMed |

[12]  C. H. Lu, Y. Wang, Y. Li, H. H. Yang, X. Chen, X. R. Wang, J. Mater. Chem. 2009, 19, 1077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Cms78%3D&md5=e40a6d0ed5008c34460e18bc03350b1fCAS |

[13]  Y. S. Ji, J. J. Yin, Z. G. Xu, C. D. Zhao, H. Y. Huang, H. X. Zhang, C. M. Wang, Anal. Bioanal. Chem. 2009, 395, 1125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSlt7zN&md5=a9bcab2337c9b68c82690c3c72ae3a4fCAS |

[14]  X. W. Kan, Z. R. Geng, Y. Zhao, Z. L. Wang, J. J. Zhu, Nanotechnology 2009, 20, 165601.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  L. G. Chen, X. P. Zhang, L. Sun, Y. Xu, Q. L. Zeng, H. Wang, H. Y. Xu, A. M. Yu, H. Q. Zhang, L. Ding, J. Agric. Food Chem. 2009, 57, 10073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CrsrrI&md5=44375e9132c197c84a0f597752a4abdfCAS |

[16]  M. Karimi, F. Aboufazeli, H. R. L. Z. Zhad, O. Sadeghi, E. Najafi, Food Anal. Methods 2014, 7, 73.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. B. Zheng, J. Z. Mo, Y. Zhang, Q. Gao, J. Ding, Q. W. Yu, Y. Q. Feng, J. Chromatogr. A 2014, 1329, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSqsro%3D&md5=5a6ba28b7d40564d622ab5e6269fed96CAS | 24418234PubMed |

[18]  Y. G. Zhao, L. X. Zhou, S. D. Pan, P. P. Zhan, X. H. Chen, M. C. Jin, J. Chromatogr. A 2014, 1345, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVCjtbs%3D&md5=860ec843d51d8036588910b8c065c806CAS | 24780256PubMed |

[19]  P. Sadilek, D. Satinsky, P. Solich, TrAC, Trends Anal. Chem. 2007, 26, 375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1GqtLo%3D&md5=b9af58eb282f6b492688eb0a4058dd08CAS |

[20]  M. Zhao, C. Zhang, Y. Zhang, X. Z. Guo, H. S. Yan, H. Q. Zhang, Chem. Commun. 2014, 50, 2208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCgu7c%3D&md5=7bc3c1a5bf9f538aa7336b9a6587e43bCAS |

[21]  Y. L. Zou, C. Y. Zhao, J. D. Dai, Z. P. Zhou, J. M. Pan, P. Yu, Y. S. Yan, C. X. Li, Colloid Polym. Sci. 2014, 292, 333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCiu7%2FE&md5=921aae80faedfc3621e0f8a03804bff4CAS |

[22]  E. Turiel, A. Martin-Esteban, J. L. Tadeo, J. Chromatogr. A 2007, 1172, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Khs7nJ&md5=f2b6160ad3eba3e1f8d7aeb7db8f1d74CAS | 17961582PubMed |

[23]  J. M. Nelson, T. M. Chiller, J. H. Powers, F. J. Angulo, Clin. Infect. Dis. 2007, 44, 977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVOrt7s%3D&md5=018bf89dbc4fa8083f943bbd0cd3cb52CAS | 17342653PubMed |

[24]  Y. K. Lv, Y. Ma, X. B. Zhao, C. L. Jia, H. W. Sun, Talanta 2012, 89, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGmur4%3D&md5=55a048e6e482cfd0ca663c288cc33b6bCAS | 22284491PubMed |

[25]  H. Sanbe, J. Haginaka, Analyst 2003, 128, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlOjtLg%3D&md5=45f2094d35872548b48cd38dafa7b272CAS | 12866873PubMed |

[26]  O. I. Parisi, G. Cirillo, M. Curcio, F. Puoci, F. Iemma, U. G. Spizzirri, N. Picci, J. Polym. Res. 2010, 17, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFahsbk%3D&md5=bdfcc2a841338baa832413b8b7769249CAS |

[27]  Council Regulation 2377/90/EEC laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin: Off. J. Eur. Commun. 1990, L, 224.