Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Highly Ordered Honeycomb Film Formation of Linear Polymers by the Breath Figure Technique

Paul A. Gurr A C , Zhou Zhang A B C , Xiaojuan Hao B , Timothy C. Hughes B D and Greg G. Qiao A D
+ Author Affiliations
- Author Affiliations

A Polymer Science Group (PSG), Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Vic. 3168, Australia.

C P.A. Gurr and Z. Zhang are equally first authors.

D Corresponding authors. Email: gregghq@unimelb.edu.au; Tim.Hughes@csiro.au

Australian Journal of Chemistry 69(10) 1130-1139 https://doi.org/10.1071/CH16119
Submitted: 26 February 2016  Accepted: 25 March 2016   Published: 20 May 2016

Abstract

Highly ordered, porous honeycomb (HC) films were prepared by the breath figure technique from linear polymers poly(methyl methacrylate) (PMMA) and polystyrene (PS). Typically HC films are difficult to form from such simple linear polymers. The addition of a novel fluorinated polymer (FP) additive with as little as 1 wt-% to PMMA or 5 wt-% to PS was required to obtain regular porous HC films. Through investigation of the influence of the additive on the polymer properties, three parameters based on interfacial tension, polymer solution viscosity, and polymer solidification rate were identified as key factors affecting the ability of polymer systems to form regular porous HC films. A new hypothesis was subsequently developed based on the relationships of these parameters to explain the unusual behaviour associated with HC film formation from linear PMMA and PS with addition of FP additive. This work will provide a new tool to guide the formation of HC films and will greatly broaden the range of polymers used to form HC films in the future.


References

[1]  C. Cheng, Y. Tian, Y. Shi, R. Tang, F. Xi, Macromol. Rapid Commun. 2005, 26, 1266.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslGgsb4%3D&md5=b14e70d45dea4fe75aa60a94fa9b659aCAS |

[2]  T. Hayakawa, S. Horiuchi, Angew. Chem., Int. Ed. 2003, 42, 2285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Gms74%3D&md5=854bc41a1426a569c0c2e9448276bafbCAS |

[3]  B. de Boer, U. Stalmach, H. Nijland, G. Hadziioannou, Adv. Mater. 2000, 12, 1581.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Sg&md5=b20dee088d5ed91d803704ff829bc422CAS |

[4]  W. Wang, C. Du, X. Wang, X. He, J. Lin, L. Li, S. Lin, Angew. Chem., Int. Ed. 2014, 53, 12116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVenu7zL&md5=33d5d8f3bbde99567f1ac0fc6ca02cbeCAS |

[5]  L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, U. H. Bunz, Adv. Mater. 2004, 16, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlWgur0%3D&md5=a89e2fd71c9b4698bd7972a53145e626CAS |

[6]  T. Nishikawa, J. Nishida, R. Ookura, S.-I. Nishimura, S. Wada, T. Karino, M. Shimomura, Mater. Sci. Eng., C 1999, 8–9, 495.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  L.-W. Zhu, Y. Ou, L. S. Wan, Z. K. Xu, J. Phys. Chem. B 2014, 118, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlCluw%3D%3D&md5=a76f9262bc2e1e679336e1592c55db3bCAS | 24400929PubMed |

[8]  A. E. Saunders, J. L. Dickson, P. S. Shah, M. Y. Lee, K. T. Lim, K. P. Johnston, B. A. Korgel, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2006, 73, 031608.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. X. Cheng, Y. Tian, Y. Q. Shi, R. P. Tang, F. Xi, Langmuir 2005, 21, 6576.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVagtbo%3D&md5=7a0ca08304f3f8187851d8fc9ec4fc6aCAS | 15982070PubMed |

[10]  J. Chen, X. Yan, Q. Zhao, L. Li, F. Huang, Polym. Chem. 2012, 3, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntleitQ%3D%3D&md5=5a0bbf64607d1b3e78abab42e6c235e3CAS |

[11]  G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFWhs7s%3D&md5=d733859e819ef744f9d4387a21ec785dCAS |

[12]  H. Sun, H. Li, W. Bu, M. Xu, L. Wu, J. Phys. Chem. B 2006, 110, 24847.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Whs7bN&md5=38d95a7a478358c7c4017531bf8e91ffCAS | 17149904PubMed |

[13]  M. H. Stenzel, T. P. Davis, A. G. Fane, J. Mater. Chem. 2003, 13, 2090.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFWiu7Y%3D&md5=fd0a861e8d0956a158c7ccff198b8487CAS |

[14]  L. A. Connal, R. Vestberg, P. A. Gurr, C. J. Hawker, G. G. Qiao, Langmuir 2008, 24, 556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVegu7jM&md5=a69fdb61612c2af998d9515cf28ec5b1CAS | 18081331PubMed |

[15]  L. A. Connal, R. Vestberg, C. J. Hawker, G. G. Qiao, Adv. Funct. Mater. 2008, 18, 3315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOgtbjF&md5=3f994e1974fc69255086160c85165e62CAS |

[16]  L. A. Connal, R. Vestberg, C. J. Hawker, G. G. Qiao, Adv. Funct. Mater. 2008, 18, 3706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyqu7%2FE&md5=dcb40a168fc1545b0a6ebacdd1846331CAS |

[17]  L. A. Connal, Aust. J. Chem. 2007, 60, 794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKgur7N&md5=9bdc92017e09f97a63b60f46cf3b9498CAS |

[18]  Z. Zhang, X. J. Hao, P. A. Gurr, A. Blencowe, T. C. Hughes, G. G. Qiao, Aust. J. Chem. 2012, 65, 1186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmu7%2FF&md5=009f3c21a9fc87a4be254b27938e0951CAS |

[19]  P. Tang, J. Hao, J. Colloid Interface Sci. 2009, 333, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVCmt7g%3D&md5=72348122951d421a3f4a7f0994256934CAS | 19167717PubMed |

[20]  Y. Yu, Y. Ma, Soft Matter 2011, 7, 884.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWhsb4%3D&md5=f8cb20ce80eb52f11f974bc305048291CAS |

[21]  M. Lomoschitz, S. Edinger, G. Bauer, G. Friedbacher, U. Schubert, J. Mater. Chem. 2010, 20, 2075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1alt74%3D&md5=a9b65fa25878a82a047dca6f3429b240CAS |

[22]  X. Jiang, T. Zhang, L. Xu, C. Wang, X. Zhou, N. Gu, Langmuir 2011, 27, 5410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlOrt70%3D&md5=f733829e88c3293cef8e53de679018dfCAS | 21469676PubMed |

[23]  L.-S. Wan, L.-W. Zhu, Y. Ou, Z.-K. Xu, Chem. Commun. 2014, 50, 4024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12gs7s%3D&md5=b662c9c46fe63a761be90ecbdbb9a221CAS |

[24]  H. Bai, C. Du, A. Zhang, L. Li, Angew. Chem., Int. Ed. 2013, 52, 12240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Wms7rO&md5=94fe706fd20399d9d1798d9de4f86464CAS |

[25]  E. Ferrari, P. Fabbri, F. Pilati, Langmuir 2011, 27, 1874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVylsA%3D%3D&md5=8f50ecb451e50fe8e00b5d87a1cf4c53CAS | 21226506PubMed |

[26]  L. A. Connal, P. A. Gurr, G. G. Qiao, D. H. Solomon, J. Mater. Chem. 2005, 15, 1286.
         | 1:CAS:528:DC%2BD2MXit1Chtbo%3D&md5=fe9d128d8d46dabb271085d9db346f2aCAS |

[27]  L.-W. Zhu, B.-H. Wu, L.-S. Wan, Z.-K. Xu, Polym. Chem. 2014, 5, 4311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWrtbjM&md5=d0a8e566a682f7a2ab2c06862f938b6cCAS |

[28]  J. Peng, Y. Han, J. Fu, Y. Yang, B. Li, Macromol. Chem. Phys. 2003, 204, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlSrtbo%3D&md5=def41b70cefe5af355a762e0143fe829CAS |

[29]  J. Peng, Y. Han, Y. Yang, B. Li, Polymer 2004, 45, 447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFGitbw%3D&md5=5585fbcdf1d5e150a2c17387a87833bfCAS |

[30]  L.-S. Wan, J.-W. Li, B.-B. Ke, Z.-K. Xu, J. Am. Chem. Soc. 2012, 134, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOhtrvK&md5=2a9a00e78b11aaabfeefc49249d7a2f4CAS | 22142340PubMed |

[31]  A. Muñoz-Bonilla, E. Ibarboure, V. Bordegé, M. Fernández-García, J. Rodríguez-Hernández, Langmuir 2010, 26, 8552.
         | Crossref | GoogleScholarGoogle Scholar | 20151693PubMed |

[32]  A. Muñoz-Bonilla, E. Ibarboure, E. Papon, J. Rodriguez-Hernandez, Langmuir 2009, 25, 6493.
         | Crossref | GoogleScholarGoogle Scholar | 19397280PubMed |

[33]  A. S. de León, A. del Campo, M. Fernández-García, J. Rodríguez-Hernández, A. Muñoz-Bonilla, Langmuir 2014, 30, 6134.
         | Crossref | GoogleScholarGoogle Scholar | 24814700PubMed |

[34]  L.-S. Wan, B.-B. Ke, J. Zhang, Z.-K. Xu, J. Phys. Chem. B 2012, 116, 40.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SmurbL&md5=44b66d9650c6afb8a54fc8bf479e2873CAS | 22148166PubMed |

[35]  T. Ponnusamy, L. B. Lawson, L. C. Freytag, D. A. Blake, R. S. Ayyala, V. T. John, Biomatter 2012, 2, 77.
         | Crossref | GoogleScholarGoogle Scholar | 23507805PubMed |

[36]  Y. Fukuhira, E. Kitazono, T. Hayashi, H. Kaneko, M. Tanaka, M. Shimomura, Y. Sumi, Biomaterials 2006, 27, 1797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12isL3P&md5=bea63a7721fcb437535036cbfd524602CAS | 16293301PubMed |

[37]  L. A. Connal, R. Vestberg, P. A. Gurr, C. J. Hawker, G. G. Qiao, Langmuir 2008, 24, 556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVegu7jM&md5=a69fdb61612c2af998d9515cf28ec5b1CAS | 18081331PubMed |

[38]  M. H. Stenzel-Rosenbaum, T. P. Davis, A. G. Fane, V. Chen, Angew. Chem. 2001, 113, 3536.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  X. Zhang, J. Ren, H. Yang, Y. He, J. Tan, G. G. Qiao, Soft Matter 2012, 8, 4314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1Sjtr0%3D&md5=bc82a0cc1df8b220f2dad064e3ab3ccaCAS |

[40]  F. Pilati, M. Montecchi, P. Fabbri, A. Synytska, M. Messori, M. Toselli, K. Grundke, D. Pospiech, J. Colloid Interface Sci. 2007, 315, 210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKrsbrL&md5=4063132b217816060917a60efe1e3300CAS | 17658543PubMed |

[41]  A. S. de León, A. del Campo, M. Fernández-García, J. Rodríguez-Hernández, A. Muñoz-Bonilla, Langmuir 2012, 28, 9778.
         | Crossref | GoogleScholarGoogle Scholar | 22616876PubMed |

[42]  N. V. Tsarevsky, K. Matyjaszewski, RSC Polym. Chem. Ser. 2013, 4, 287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVWgsLw%3D&md5=236ecddbe80329fb2e3e3ef8b7ab55e6CAS |

[43]  Z. Zhang, T. C. Hughes, P. A. Gurr, A. Blencowe, H. Uddin, X. J. Hao, G. G. Qiao, Polymer 2013, 54, 4446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2lu77E&md5=a707dd456ab5d7939c0ae98ea92d19b4CAS |

[44]  Z. Zhang, T. C. Hughes, P. A. Gurr, A. Blencowe, X. J. Hao, G. G. Qiao, Adv. Mater. 2012, 24, 4327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFajs70%3D&md5=4f2616711143327969b516f5b2305d22CAS | 22729948PubMed |

[45]  A. Adamson, Physical Chemistry of Surfaces, 3rd Ed. 1976 (Wiley: New York, NY).

[46]  O. Pitois, B. François, Colloid Polym. Sci. 1999, 277, 574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFSisLk%3D&md5=f895001694a28002bd67adb16a0acc0fCAS |

[47]  M. Rahman, C. S. Brazel, Prog. Polym. Sci. 2004, 29, 1223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1OksLs%3D&md5=5d5784bd6353ca5e6bc148569aadc61cCAS |

[48]  V. Sharma, L. Song, R. L. Jones, M. S. Barrow, P. R. Williams, M. Srinivasarao, Europhys. Lett. 2010, 91, 38001.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  M. Shimomura, T. Sawadaishi, Curr. Opin. Colloid Interface Sci. 2001, 6, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFKrsbg%3D&md5=da88d0bbd3f76aafbbd455cf5c9c9baaCAS |

[50]  N. Maruyama, T. Koito, J. Nishida, T. Sawadaishi, X. Cieren, K. Ijiro, O. Karthaus, M. Shimomura, Thin Solid Films 1998, 327–329, 854.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  E. Ferrari, P. Fabbri, F. Pilati, Langmuir 2011, 27, 1874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVylsA%3D%3D&md5=8f50ecb451e50fe8e00b5d87a1cf4c53CAS | 21226506PubMed |

[52]  L. Cui, Y. Han, Langmuir 2005, 21, 11085.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKhtbfJ&md5=c0f2d9be64252a3a4a298eaba40bf341CAS | 16285775PubMed |

[53]  O. Pitois, B. François, Eur. Phys. J. B 1999, 8, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVOis70%3D&md5=c9b4cca5f19c9c60abcd7a3d795896cdCAS |

[54]  Y. Fukuhira, H. Yabu, K. Ijiro, M. Shimomura, Soft Matter 2009, 5, 2037.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1yktbc%3D&md5=35374b3b71c9e43b66cbac5cb62fcc6aCAS |

[55]  N. Maruyama, O. Karthaus, K. Ijiro, M. Shimomura, T. Koito, S. Nishimura, T. Sawadaishi, N. Nishi, S. Tokura, Supramol. Sci. 1998, 5, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFah&md5=b22c2828c18c3c2cb2285d6bea17424aCAS |

[56]  A. Bolognesi, C. Mercogliano, S. Yunus, M. Civardi, D. Comoretto, A. Turturro, Langmuir 2005, 21, 3480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVSitb4%3D&md5=7154e975fb60b79d2c241da5bab93836CAS | 15807591PubMed |

[57]  M. S. Park, W. Joo, J. K. Kim, Langmuir 2006, 22, 4594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFWrtLg%3D&md5=d87cf2633992c9b41280f878d958a933CAS | 16649769PubMed |

[58]  X. Xiong, W. Zou, Z. Yu, J. Duan, X. Liu, S. Fan, H. Zhou, Macromolecules 2009, 42, 9351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cku7nM&md5=05aa89fd9786559f9773c7307bff8058CAS |

[59]  M. Kojima, Y. Hirai, H. Yabu, M. Shimomura, Polym. J. 2009, 41, 667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GjtLrP&md5=54f80be86cec32623d49422f36d09108CAS |

[60]  A. Zhang, C. Du, H. Bai, Y. Wang, J. Wang, L. Li, ACS Appl. Mater. Interfaces 2014, 6, 8921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVensbk%3D&md5=9ccf4de6439107f3799e1a4f4ba2784cCAS | 24801873PubMed |

[61]  O. Pitois, B. Francois, Colloid Polym. Sci. 1999, 277, 574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFSisLk%3D&md5=f895001694a28002bd67adb16a0acc0fCAS |

[62]  A. Vrij, Discuss. Faraday Soc. 1966, 42, 23.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  C. Tanford, Physical Chemistry of Macromolecules 1961 (Wiley: New York, NY).

[64]  H. Morawetz, Macromolecules in Solution, 2nd Ed. 1975 (Wiley, New York, NY).

[65]  P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes, Polymer 2005, 46, 4799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1ahu74%3D&md5=a10b39fc92d51b63412a6c60ca0be7afCAS |

[66]  J. Jungnickel, F. Weiss, J. Polym. Sci., Polym. Phys. Ed. 1961, 49, 437.
         | 1:CAS:528:DyaF3MXhtValtbg%3D&md5=33e6a44b4ca0b2817f58d37f5c1304d1CAS |

[67]  H. Hertz, J. Reine Angew. Math. 1882, 92, 156.

[68]  A.-Y. Jee, M. Lee, Polym. Test. 2010, 29, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WnsbzO&md5=2ec6f5c3a8cb9a4a43b72cbe66c16137CAS |

[69]  M. J. Rosenbluth, W. A. Lam, D. A. Fletcher, Biophys. J. 2006, 90, 2994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFequ78%3D&md5=d8aac9f9c4cb9e0e150a5df7a2b1e21cCAS | 16443660PubMed |