Hydrolysis of Queensland Fruit Fly, Bactrocera tryoni (Froggatt), Attractants: Kinetics and Implications for Biological Activity
Soo J. Park A D , Matthew S. Siderhurst B , Ian Jamie A and Phillip W. Taylor CA Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
B Eastern Mennonite University, Department of Chemistry, 1200 Park Road, Harrisonburg, VA, 22802, USA.
C Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
D Corresponding author. Email: soojean.park@mq.edu.au
Australian Journal of Chemistry 69(10) 1162-1166 https://doi.org/10.1071/CH16073
Submitted: 6 February 2016 Accepted: 9 April 2016 Published: 17 May 2016
Abstract
Queensland fruit fly (Q-fly), Bactrocera tryoni (Froggatt), is a major insect pest of horticultural crops in Australia. Cuelure is the most commonly used attractant for monitoring as well as for management of Q-fly populations through the male annihilation technique and mass trapping. There has been some concern that cuelure is susceptible to hydrolysis, which would limit its usefulness under conditions of high humidity and give rise to inconsistent fly population monitoring. To give some insight into the hydrolysis of cuelure and two closely related compounds, melolure and a newly developed lure, 4-(4-(2,2,2-trifluoroacetoxy)phenyl)-2-butanone (RKTA), the kinetics of hydrolysis of these compounds were quantitatively investigated by gas chromatography–flame ionization detection. From the experimental data, we found the hydrolysis half-lives of cuelure, melolure, and RKTA, at a water concentration of 25 mol L–1, to be ~20 days, 22 h, and 1.2 min respectively. When extrapolated to a water concentration of 1.3 mmol L–1, corresponding to atmospheric conditions of 100 % relative humidity at 25°C, the half-lives are ~1660, ~51, and ~1.4 years respectively.
References
[1] D. L. Hancock, E. L. Hamacek, A. C. Lloyd, M. M. Elson-Harris, The Distribution and Host Plants of Fruit Flies (Diptera: Tephritidae) in Australia 2000 (DPI Publications: Brisbane).[2] Australia. Horticultural Policy Council, The impact of fruit flies on Australian horticulture: report to the honourable John Kerin, Minister for Primary Industries and Energy, April 1991 (Horticultural Policy Council: Canberra).
[3] A. S. Gilchrist, B. Dominiak, P. S. Gillespie, J. A. Sved, Aust. J. Zool. 2006, 54, 87.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. R. Clarke, K. S. Powell, C. W. Weldon, P. W. Taylor, Ann. Appl. Biol. 2011, 158, 26.
| Crossref | GoogleScholarGoogle Scholar |
[5] I. M. White, M. M. Elson-Harris, Fruit Flies of Economic Significance: Their Identification and Bionomics 1994 (CAB International: Wallingford, UK).
[6] Ministry for Primary Industries, Queensland Fruit Fly, Bactrocera tryoni (Ministry for Primary Industries: NZ) 2015 Available at http://www.biosecurity.govt.nz/pests/queensland-fruit-fly [Verified 3 November 2015]
[7] Department of Agriculture and Water Resources, Technical Barriers to Trade (Department of Agriculture and Water Resources: Australia) 2015 Available at http://www.agriculture.gov.au/market-access-trade/tbt [Verified 22 October 2015]
[8] A. M. El-Sayed, D. M. Suckling, J. A. Byers, E. B. Jang, C. H. Wearing, J. Econ. Entomol. 2009, 102, 815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslWlsbk%3D&md5=c66e50f7c744558399540aa409d76451CAS | 19610395PubMed |
[9] M. Beroza, B. H. Alexander, L. F. Steiner, W. C. Mitchell, D. H. Miyashita, Science 1960, 131, 1044.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvhtlWktg%3D%3D&md5=06de02190217fa09068259a8ec1e1e64CAS | 17808098PubMed |
[10] L. Bauer, A. Birch, A. Ryan, Aust. J. Chem. 1955, 8, 534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28Xlt1Gksw%3D%3D&md5=8fdd224a660c2f77038f5cb9e1b8d841CAS |
[11] V. Casaña-Giner, J. E. Oliver, E. B. Jang, L. Carvalho, A. Khirmian, A. B. Demilo, G. T. Mcquate, J. Entomol. Sci. 2003, 38, 120.
[12] R. L. Metcalf, E. R. Metcalf, Plant Kairomones in Insect Ecology and Control 1992 (Chapman and Hall: New York).
[13] B. C. Dominiak, A. J. Campbell, E. B. Jang, A. Ramsey, B. G. Fanson, J. Econ. Entomol. 2015, 108, 1176.
| Crossref | GoogleScholarGoogle Scholar | 26470243PubMed |
[14] J. E. Royer, Aust. Entomol. 2015, 54, 411.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. S. Siderhurst, S. J. Park, C. N. Buller, I. M. Jamie, N. C. Manoukis, E. B. Jang, P. W. Taylor, J. Chem. Ecol. 2016, 42, 156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksFCmt78%3D&md5=aa162e4bdd6a52ae063221c951c251abCAS | 26922349PubMed |
[16] R. L. Metcalf, Ann. Entomol. Soc. Am. 1990, 83, 1017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVGgs78%3D&md5=c498d65f2c2597da1da3be03a502c573CAS |
[17] B. C. Dominiak, C. S. Clifford, S. G. Neielsen, Plant Prot. Q. 2009, 24, 157.
[18] R. A. I. Drew, Aust. J. Entomol. 1974, 13, 267.
| Crossref | GoogleScholarGoogle Scholar |
[19] W. Mabey, T. Mill, J. Phys. Chem. Ref. Data 1978, 7, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlsFaitrw%3D&md5=7b44f27a773980db208bd99ca535be80CAS |
[20] S. Ba-Saif, A. K. Luthra, A. Williams, J. Am. Chem. Soc. 1987, 109, 6362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlslGhtLg%3D&md5=dbfc2c165c76550b10fb0360cb63d13dCAS |
[21] S. Ba-Saif, A. K. Luthra, A. Williams, J. Am. Chem. Soc. 1989, 111, 2647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsFemsLo%3D&md5=287bda5dbba08478971eed621ce08e49CAS |
[22] J. P. Guthrie, J. Am. Chem. Soc. 1991, 113, 3941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVKhtb4%3D&md5=0512b272589c46aa631d38d9207b1226CAS |
[23] D. Stefanidis, W. P. Jencks, J. Am. Chem. Soc. 1993, 115, 6045.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVSitb8%3D&md5=6c8d2f5e54e7dc6305685f140b25c2e2CAS |
[24] J. F. Marlier, Acc. Chem. Res. 2001, 34, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOgtA%3D%3D&md5=811a0b131ec89e38d2c4e029e70c9f38CAS | 11308302PubMed |
[25] D. F. DeTar, J. Am. Chem. Soc. 1982, 104, 7205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVOm&md5=0a6c45e485a50bcf95f6fb20223640fcCAS |
[26] Z. Said, J. G. Tillett, J. Org. Chem. 1981, 46, 2586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksVajt7k%3D&md5=87e8a6f630e1cf7a86a14c86bdba9ed2CAS |
[27] S. Yamabe, N. Tsuchida, Y. Hayashida, J. Phys. Chem. 2005, 109, 7216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFWntbs%3D&md5=236013d7002afbd4c34356714122a7f9CAS |
[28] M. L. M. Schilling, H. D. Roth, W. C. Herndon, J. Am. Chem. Soc. 1980, 102, 4271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltFektLw%3D&md5=4125360d63ab369231bbbcb35c0b10a6CAS |
[29] A. Skrabal, M. Rückert, Monatsh. Chem. 1928, 50, 369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB1MXit1emsw%3D%3D&md5=f3b8d152859f4813ccf04948382e51d8CAS |
[30] V. Gold, D. G. Oakenfull, T. Riley, J. Chem. Soc. B Phys. Org. 1968, 515–519,
| Crossref | GoogleScholarGoogle Scholar |
[31] S. Begum, M. A. Zeb, N. Pirzada, J. Chem. Soc. Pak. 2000, 22, 225.
[32] J. G. Winter, J. M. W. Scott, Can. J. Chem. 1968, 46, 2887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkvVGrtLs%3D&md5=5b599bf7a53f5ed7267f65202f361477CAS |
[33] E. B. Jang, V. Casana-Giner, J. E. Oliver, J. Econ. Entomol. 2007, 100, 1124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWktLzM&md5=79aff113d13b96d587778727182ae90eCAS | 17849860PubMed |
[34] S. J. Park, R. Morelli, B. L. Hanssen, J. F. Jamie, I. M. Jamie, M. S. Siderhurst, P. W. Taylor, PLoS One 2016, In press.
| 26808388PubMed |
[35] Bureau of Meteorology, Climate Data Online 2016 (Bureau of Meteorology: Australia); Available at www.bom.gov.au [Verified 24 March 2016]
[36] W. P. Jencks, J. Carriuolo, J. Am. Chem. Soc. 1961, 83, 1743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtlKqtrw%3D&md5=fe17068ede3083a0fb294aa2f2302f44CAS |
[37] P. L. da Silva, L. Guimarães, J. R. Pliego, J. Phys. Chem. B 2013, 117, 6487.
| Crossref | GoogleScholarGoogle Scholar | 23642004PubMed |
[38] C. M. L. Frasson, T. A. S. Brandão, C. Zucco, F. Nome, J. Phys. Org. Chem. 2006, 19, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Witrs%3D&md5=2dc72e0bbac7e7826a45ebc8b8604c36CAS |
[39] M. A. Fernandez, R. H. de Rossi, J. Org. Chem. 1999, 64, 6000.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlKksrs%3D&md5=37f41b8ba832f0bd7ea8f99d0f098bb1CAS |
[40] K. S. Venkatasubban, K. R. Davis, J. L. Hogg, J. Am. Chem. Soc. 1978, 100, 6125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlvFKmtbs%3D&md5=35f0267e3c96f929f133877327bea9a6CAS |
[41] K. S. Venkatasubban, M. Bush, E. Ross, M. Schultz, O. Garza, J. Org. Chem. 1998, 63, 6115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVGksbc%3D&md5=95fb4f3fbafc97e9c9a280ac17e94a19CAS | 11672237PubMed |