Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Amino Acid Functional Polymers: Biomimetic Polymer Design Enabling Catalysis, Chiral Materials, and Drug Delivery

Emma R. L. Brisson A , Zeyun Xiao A and Luke A. Connal A B
+ Author Affiliations
- Author Affiliations

A Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Corresponding author. Email: luke.connal@unimelb.edu.au




Emma Brisson received a Bachelor of Applied Science degree in engineering science from the University of Toronto in 2009. In 2011, she obtained a Master's degree in applied science in the field of organic photovoltaic materials, also at the University of Toronto. She is currently pursuing a Ph.D. degree with Dr Luke Connal at the University of Melbourne with an interest in functional polymers and their various applications.



Dr Zeyun Xiao obtained his bachelor's degree from Zhejiang University, and his Ph.D. degree from Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, in the field of supramolecular chemistry and self-assembly. After working on enzyme mimics for asymmetric catalysis in Lund, Dr Xiao moved to the University of Melbourne, first working on organic electronic materials, and then on functional polymers and enzyme mimics.



Luke Connal received his bachelor's degree in chemical engineering in 2002 and a Ph.D. in polymer chemistry in 2007, both from the University of Melbourne, Australia. He worked in a post-doctoral position with Frank Caruso from 2007 to 2009. In 2009, he became a Sir Keith Murdoch post-doctoral fellow at the University of California, Santa Barbra, working with Professor Craig Hawker. In 2013, Luke returned to the University of Melbourne as a Veski Innovation Fellow and Senior Lecturer in the Department of Chemical and Biomolecular Engineering. His research interests lie in the development of bio-inspired materials using advanced polymer design, self-assembly, and catalysis.

Australian Journal of Chemistry 69(7) 705-716 https://doi.org/10.1071/CH16028
Submitted: 19 January 2016  Accepted: 20 February 2016   Published: 13 April 2016

Abstract

Amino acids are the natural building blocks for the world around us. Highly functional, these small molecules have unique catalytic properties, chirality, and biocompatibility. Imparting these properties to surfaces and other macromolecules is highly sought after and represents a fast-growing field. Polymers functionalized with amino acids in the side chains have tunable optical properties, pH responsiveness, biocompatibility, structure and self-assembly properties. Herein, we review the synthesis of amino acid functional polymers, discuss manipulation of available strategies to achieve the desired responsive materials, and summarize some exciting applications in catalysis, chiral particles, and drug delivery.


References

[1]  F. Sanda, T. Endo, Macromol. Chem. Phys. 1999, 200, 2651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVyrt78%3D&md5=bf75a52de11c0589c03c4ba6a1101d4bCAS |

[2]  S. Binauld, D. Damiron, L. A. Connal, C. J. Hawker, E. Drockenmuller, Macromol. Rapid Commun. 2011, 32, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVyrtQ%3D%3D&md5=66cd9e78b268e0cf593ea228f199caedCAS | 21433136PubMed |

[3]  R. K. Kulkarni, H. Morawetz, J. Polym. Sci., Part A: Polym. Chem. 1961, 54, 491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XhtlCnsQ%3D%3D&md5=97faf81e74bc21f3b3cedb3f52416b8aCAS |

[4]  S. M. Heilmann, H. K. Smith, J. Appl. Polym. Sci. 1979, 24, 1551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtFahtLw%3D&md5=78ea325c1b86ea3a0b99365f464719b1CAS |

[5]  J. Morcellet-Sauvage, M. Morcellet, C. Loucheux, Makromol. Chem. 1981, 182, 949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhslGktLo%3D&md5=4e879e48a9e06a6f00834e41abedac3eCAS |

[6]  R. K. O’Reilly, Polym. Int. 2010, 59, 568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1CitL0%3D&md5=8af35bf92bd70a3a698c5bb6e37c7f75CAS |

[7]  H. Mori, T. Endo, Macromol. Rapid Commun. 2012, 33, 1090.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1Wgtb4%3D&md5=b94ec65500534c69cc8c4bc20bbbdd9fCAS | 22508409PubMed |

[8]  S. G. Roy, P. De, J. Appl. Polym. Sci. 2014, 131, 41084.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. Methenitis, J. Morcellet, G. Pneumatikakis, M. Morcellet, Macromolecules 1994, 27, 1455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1Ggurw%3D&md5=51831e687e0bceeffbde959581e8facbCAS |

[10]  M. Casolaro, S. Bottari, A. Cappelli, R. Mendichi, Y. Ito, Biomacromolecules 2004, 5, 1325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFSgt74%3D&md5=e53a2e4e3441db46bd23a7488493d281CAS | 15244447PubMed |

[11]  F. Sanda, J. Kamatani, H. Handa, T. Endo, Macromolecules 1999, 32, 2490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFOlsLg%3D&md5=511255c8f88c562c94b13706f4766973CAS |

[12]  C. Luo, Y. Liu, Z. Li, Macromolecules 2010, 43, 8101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKksr%2FP&md5=98a9c45d2291314dbdd6ec389bb21229CAS |

[13]  C. Luo, B. Zhao, Z. Li, Polymer 2012, 53, 1725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1yns78%3D&md5=d3efb0580cd0c437926ad36f10cf3cd0CAS |

[14]  E.-K. Bang, S. Ward, G. Gasparini, N. Sakai, S. Matile, Polym. Chem. 2014, 5, 2433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslGmsrs%3D&md5=1e515b8c0ce892b0c664a66b5e4b2d9bCAS |

[15]  G. Gasparini, E. K. Bang, G. Molinard, D. V. Tulumello, S. Ward, S. O. Kelley, A. Roux, N. Sakai, S. Matile, J. Am. Chem. Soc. 2014, 136, 6069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1Sgtrs%3D&md5=0ff439113815c6acb1e3a76a288a6e36CAS | 24735462PubMed |

[16]  H. Sun, C. Gao, Biomacromolecules 2010, 11, 3609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOktr3E&md5=e2d13c2dcb64b6c81912a52976f6f73dCAS | 21114313PubMed |

[17]  S. Fujii, M. Kido, M. Sato, Y. Higaki, T. Hirai, N. Ohta, K. Kojio, A. Takahara, Polym. Chem. 2015, 6, 7053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKntbzI&md5=6cda4e4f250ec182a0fb15b28b89f315CAS |

[18]  S. G. Roy, R. Acharya, U. Chatterji, P. De, Polym. Chem. 2013, 4, 1141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlels7k%3D&md5=7151399f39aa1e904189776cd760fd18CAS |

[19]  S. Kumar, R. Acharya, U. Chatterji, P. De, Langmuir 2013, 29, 15375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGktb3M&md5=1e1d992b1001830a4a3361507e3873f2CAS | 24274731PubMed |

[20]  S. Ghosh Roy, P. De, Polym. Chem. 2014, 5, 6365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2qtLjN&md5=50614e6265e5cb0212e2bf6c0a49a993CAS |

[21]  K. Bauri, S. G. Roy, S. Pant, P. De, Langmuir 2013, 29, 2764.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVels7w%3D&md5=1d8f32cf6cc0d6fbf1c22764c30bc254CAS | 23346856PubMed |

[22]  F. Sanda, T. Abe, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1997, 35, 2619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslajsbw%3D&md5=0c2ddaec7b915c95dd01e4610e211011CAS |

[23]  G. B. Thomas, C. E. Lipscomb, M. K. Mahanthappa, Polym. Chem. 2012, 3, 741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFalu78%3D&md5=2a1c50de459c03dda3b0164561800b5dCAS |

[24]  V. Boyer, B. G. Davis, M. Stanchev, A. J. Fairbanks, Chem. Commun. 2001, 1908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1yms7g%3D&md5=af2e702d5220d76db8d1a6ef0f4a346bCAS |

[25]  S. Nagaoka, A. Shundo, T. Satoh, K. Nagira, R. Kishi, K. Ueno, K. Iio, H. Ihara, Synth. Commun. 2005, 35, 2529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSks7jP&md5=344c44dfb4cbb88987faa7bcf4b7e19aCAS |

[26]  A. C. Kurtz, J. Biol. Chem. 1941, 140, 705.
         | 1:CAS:528:DyaH3MXltFCrsw%3D%3D&md5=04f90bf61747f4fa7f85c3c5cd411593CAS |

[27]  S. Banerjee, T. Maji, T. K. Paira, T. K. Mandal, Macromol. Rapid Commun. 2013, 34, 1480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CrtL3K&md5=9ebb88bdb33173c6fff4e0eef2e5de4bCAS | 23926055PubMed |

[28]  W. Li, Q. Liu, L. Liu, J. Biomater. Sci. Polym. Ed. 2014, 25, 1730.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsValtbvF&md5=7aead5809d526abc152e47629d8c5ff1CAS | 25136859PubMed |

[29]  D. Weller, A. Medina-Oliva, H. Claus, S. Gietzen, K. Mohr, A. Reuter, D. Schäffel, S. Schöttler, K. Koynov, M. Bros, S. Grabbe, K. Fischer, M. Schmidt, Macromolecules 2013, 46, 8519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WlsbjK&md5=c254b4d19500b635aab22119597f5f58CAS |

[30]  Q. Liu, A. Singh, L. Liu, Biomacromolecules 2013, 14, 226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSksb%2FN&md5=a5f189fdfd18be19c7fd94fbf1b86824CAS | 23228182PubMed |

[31]  Q. Liu, W. Li, A. Singh, G. Cheng, L. Liu, Acta Biomater. 2014, 10, 2956.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslemuro%3D&md5=addd88d0eca648901401ca1f60e11269CAS | 24613545PubMed |

[32]  T. E. Kristensen, F. K. Hansen, T. Hansen, Eur. J. Org. Chem. 2009, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs12iur8%3D&md5=65c94e1d80460138c5f6d9b7123dea5eCAS |

[33]  A. M. Alswieleh, N. Cheng, I. Canton, B. Ustbas, X. Xue, V. Ladmiral, S. Xia, R. E. Ducker, O. El Zubir, M. L. Cartron, C. N. Hunter, G. J. Leggett, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 9404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVWqu70%3D&md5=1fccb702162cd5885d504939fc0afd2cCAS | 24884533PubMed |

[34]  A. C. Evans, A. Lu, C. Ondeck, D. A. Longbottom, R. K. O’Reilly, Macromolecules 2010, 43, 6374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFyqurg%3D&md5=0f1af7d1c6070a53299bf526525d8abdCAS |

[35]  Q. Shi, Y. Su, W. Chen, J. Peng, L. Nie, L. Zhang, Z Jiang, J. Membr. Sci. 2011, 366, 398.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2gt7jE&md5=8fe6c824c6696ef7eac4aad3d691eb98CAS |

[36]  S. Azari, L. Zou, Desalination 2013, 324, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1SjtbbM&md5=82783f10ddddcef00a4055b48e12d67aCAS |

[37]  X. Zhi, P. Li, X. Gan, W. Zhang, T. Shen, J. Yuan, J. Shen, J. Biomater. Sci. Polym. Ed. 2014, 25, 1619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Cks7rJ&md5=84699c218d433ef32ac729b79b976e35CAS | 25075613PubMed |

[38]  C. Xu, X. Hu, J. Wang, Y.-M. Zhang, X.-J. Liu, B.-B. Xie, C. Yao, Y. Li, X.-S. Li, ACS Appl. Mater. Interfaces 2015, 7, 17337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1SgsbnI&md5=327937037cd23256d8fc64c03cf365efCAS | 26191785PubMed |

[39]  B. L. Moore, R. K. O’Reilly, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVOkurY%3D&md5=1720c2764e79bc0191a228ba2c19eef8CAS |

[40]  X. Shang, X. Fan, S. Yang, Z. Xie, Y. Guo, Z. Hu, RSC Adv. 2015, 5, 96181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGlsr3I&md5=931c4930ef4a0c35181e945008015559CAS |

[41]  E. R. L. Brisson, Z. Xiao, L. Levin, G. V. Franks, L. A. Connal, Polym. Chem. 2016, 7, 1945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisVyrsb4%3D&md5=fa16915bf643dce6435b2808ba56bb2dCAS |

[42]  G. B. Thomas, C. E. Lipscomb, M. K. Mahanthappa, Polym. Chem. 2012, 3, 741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFalu78%3D&md5=2a1c50de459c03dda3b0164561800b5dCAS |

[43]  B. L. Moore, A. Lu, D. A. Longbottom, R. K. O’Reilly, Polym. Chem. 2013, 4, 2304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1eksLs%3D&md5=40b51d88f68955feefe43301d5ab44f4CAS |

[44]  T. Maji, S. Banerjee, Y. Biswas, T. K. Mandal, Macromolecules 2015, 48, 4957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1SgsbjL&md5=4fb6eda92258caae4402490baa7c7f87CAS |

[45]  W. Li, Q. Liu, L. Liu, Langmuir 2014, 30, 12619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1CitLnJ&md5=59cd76fb51a4ffa7c0860c020aedf554CAS | 25262768PubMed |

[46]  J. Romanski, M. Karbarz, K. Pyrzynska, J. Jurczak, Z. Stojek, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVejs7vM&md5=682339b2ed5cad67a7fe1feda8ec836eCAS |

[47]  H. G. Schild, Prog. Polym. Sci. 1992, 17, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlWmuro%3D&md5=238a6293c7ec0aa3dbdfcc6dcd0b0124CAS |

[48]  J. Seuring, S. Agarwal, Macromol. Rapid Commun. 2012, 33, 1898.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlaiurfJ&md5=ead5718b73522de42e5bdac429f03207CAS | 22961764PubMed |

[49]  K. Bauri, S. Pant, S. G. Roy, P. De, Polym. Chem. 2013, 4, 4052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslCitL0%3D&md5=0e6a8ab29488bf59fcc837a3f70e0fd1CAS |

[50]  S. Kumar, P. De, Polymer 2014, 55, 824.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1eqtg%3D%3D&md5=c51952e875163e798de3f51b7211a8bdCAS |

[51]  Y. Shimazaki, M. Takani, O. Yamauchi, Dalton Trans. 2009, 7854.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGhtrzO&md5=deceec5c6063d47324b18f6715faa2e2CAS | 19771344PubMed |

[52]  D. E. Fullenkamp, L. He, D. G. Barrett, W. R. Burghardt, P. B. Messersmith, Macromolecules 2013, 46, 1167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWltrc%3D&md5=ac43605dcafcdf2b1450adea9dc07ceeCAS | 23441102PubMed |

[53]  E. Hochuli, H. Döbeli, A. Schacher, J. Chromatogr. A 1987, 411, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtV2jsrs%3D&md5=94e25ebadcbafb368686df48325dbac2CAS |

[54]  S. Lowe, N. M. O’Brien-Simpson, L. A. Connal, Polym. Chem. 2015, 6, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVKlsL7P&md5=96f778e3e2ec0a9b606742c34571b774CAS |

[55]  S. Chen, L. Li, C. Zhao, J. Zheng, Polymer 2010, 51, 5283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlenu7jE&md5=cb02770695a02e522c12cbc9135a8728CAS |

[56]  J. M. Benns, J.-S. Choi, R. I. Mahato, J.-S. Park, S. W. Kim, Bioconjug. Chem. 2000, 11, 637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsV2jsbk%3D&md5=05d5aef7c6d7c75a4961cfbcffefe0edCAS | 10995206PubMed |

[57]  J. E. Rosen, F. X. Gu, Langmuir 2011, 27, 10507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFCisbk%3D&md5=6279299a0d64ffd9418b45a6b1d628c1CAS | 21761888PubMed |

[58]  X. Cai, J. Yuan, S. Chen, P. Li, L. Li, J. Shen, Mater. Sci. Eng. C 2014, 36, 42.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1yqtL8%3D&md5=b0a96d8b0f0b0505ae3b6015a2454cd2CAS |

[59]  M. Hadidi, A. L. Zydney, J. Membr. Sci. 2014, 452, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1CjsQ%3D%3D&md5=41bc1fefa2939bd651ca24ee22b301efCAS |

[60]  A. C. Blakeston, A. M. Alswieleh, G. R. Heath, J. S. Roth, P. Bao, N. Cheng, S. P. Armes, G. J. Leggett, R. J. Bushby, S. D. Evans, Langmuir 2015, 31, 3668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvFygsbk%3D&md5=b267e55b203e10a7370367f916b5706dCAS | 25746444PubMed |

[61]  V. Ladmiral, A. Charlot, M. Semsarilar, S. P. Armes, Polym. Chem. 2015, 6, 1805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehu7jF&md5=870850c83406aa2f2d9dfe841387aafeCAS |

[62]  T. Maji, S. Banerjee, Y. Biswas, T. K. Mandal, Macromolecules 2015, 48, 4957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1SgsbjL&md5=4fb6eda92258caae4402490baa7c7f87CAS |

[63]  H. S. Sundaram, J.-R. Ella-Menye, N. D. Brault, Q. Shao, S. Jiang, Chem. Sci. 2014, 5, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGntL3O&md5=24f81be7d0ecedeaaf8f0bafa262a8fdCAS |

[64]  B. S. Lokitz, J. E. Stempka, A. W. York, Y. Li, H. K. Goel, G. R. Bishop, C. L. McCormick, Aust. J. Chem. 2006, 59, 749.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqsr%2FO&md5=7d6ead9e1dc2984d9b8b8da48f5040fbCAS |

[65]  J. Skey, H. Willcock, M. Lammens, F. Du Prez, R. K. O’Reilly, Macromolecules 2010, 43, 5949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Gitr8%3D&md5=023062deda9cf8632fae845cc783a98dCAS |

[66]  J. Du, H. Willcock, N. S. Ieong, R. K. O’Reilly, Aust. J. Chem. 2011, 64, 1041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVegt7fO&md5=c33d6dedbe1cc678e3df55f07ea68f22CAS |

[67]  J. Du, R. K. O’Reilly, Macromol. Chem. Phys. 2010, 211, 1530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVansb4%3D&md5=1bcfdcebc6ee33de7536f711c95dc6feCAS |

[68]  S. Kumar, B. Maiti, P. De, Langmuir 2015, 31, 9422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSmtLfN&md5=37ee4334b31e67530f96a9e7f56a9ec9CAS | 26259117PubMed |

[69]  J. Skey, C. F. Hansell, R. K. O’Reilly, R. K. O’Reilly, Macromolecules 2010, 43, 1309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVGrtQ%3D%3D&md5=b02d9ff24dc821021194ceb06157e775CAS |

[70]  W. Notz, F. Tanaka, C. F. Barbas, Acc. Chem. Res. 2004, 37, 580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFemsb8%3D&md5=640e7f954e1ccc5b5455e7541441cd98CAS | 15311957PubMed |

[71]  T. E. Kristensen, K. Vestli, M. G. Jakobsen, F. K. Hansen, T. Hansen, J. Org. Chem. 2010, 75, 1620.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslShuro%3D&md5=aaed743f4124d49daeb0bd4f2f7e50b5CAS | 20141122PubMed |

[72]  T. E. Kristensen, K. Vestli, F. K. Hansen, T. Hansen, Eur. J. Org. Chem. 2009, 5185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KjurnE&md5=829687cdf3ff77334a91eb5957ed0defCAS |

[73]  T. E. Kristensen, T. Hansen, Eur. J. Org. Chem. 2010, 3179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFejtLs%3D&md5=93d5f4c9acdf4f3c644a218432e58a67CAS |

[74]  G. Wulff, Chem. Rev. 2002, 102, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptV2nurk%3D&md5=f8a988ab337b61e38914318ea46abb2cCAS | 11782127PubMed |

[75]  B. S. Lokitz, A. J. Convertine, R. G. Ezell, A. Heidenreich, Y. Li, C. L. McCormick, Macromolecules 2006, 39, 8594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOqtrfO&md5=62a6ce476364e43d9d6280d8aa8a5587CAS |

[76]  S. Kumar, S. G. Roy, P. De, Polym. Chem. 2012, 3, 1239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvV2nt7w%3D&md5=f6f7b36c1eaed3ba09261ae87ad3fc89CAS |

[77]  S. G. Roy, U. Haldar, P. De, ACS Appl. Mater. Interfaces 2014, 6, 4233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFWisbk%3D&md5=98c504b315c50d56d5a8c74e7404772aCAS | 24556036PubMed |

[78]  U. Haldar, M. Nandi, B. Ruidas, P. De, Eur. Polym. J. 2015, 67, 274.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslartLg%3D&md5=61edc58e15c7d21daff4cc29cc772d54CAS |

[79]  H. Mori, E. Takahashi, A. Ishizuki, K. Nakabayashi, Macromolecules 2013, 46, 6451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1arsL7J&md5=533d99e317f3faffcfb52b603cb36d81CAS |

[80]  H. Ye, L. Wang, R. Huang, R. Su, B. Liu, W. Qi, Z. He, ACS Appl. Mater. Interfaces 2015, 7, 22448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFGrtbrJ&md5=213039a19a046e79bec70ff745ed6e25CAS | 26407144PubMed |

[81]  L. C. Paslay, B. A. Abel, T. D. Brown, V. Koul, V. Choudhary, C. L. McCormick, S. E. Morgan, Biomacromolecules 2012, 13, 2472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFCisr4%3D&md5=9501e328d65b48935f9c729a0898f8fcCAS | 22738241PubMed |

[82]  K. E. S. Locock, T. D. Michl, J. D. P. Valentin, K. Vasilev, J. D. Hayball, Y. Qu, A Traven, H. J. Griesser, L. Meagher, M. Haeussler, Biomacromolecules 2013, 14, 4021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOisrbF&md5=c0e3aa05c3f4dc209647410ef45b5923CAS |

[83]  S. E. Exley, L. C. Paslay, G. S. Sahukhal, B. A. Abel, T. D. Brown, C. L. McCormick, S. Heinhorst, V. Koul, V. Choudhary, M. O. Elasri, S. E. Morgan, Biomacromolecules 2015, 16, 3845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVSlsLvL&md5=6ef6ce9e3af037789461e24e70f27645CAS | 26558609PubMed |