Comparison of Conventional and Microwave Heating for Evaluation of Microwave Effects
Péter Bana A and István Greiner B CA Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary.
B Gedeon Richter Plc., H-1475 Budapest, PO Box 27, Hungary.
C Corresponding author. Email: i.greiner@richter.hu
Australian Journal of Chemistry 69(8) 865-871 https://doi.org/10.1071/CH16017
Submitted: 13 January 2016 Accepted: 16 February 2016 Published: 18 March 2016
Abstract
In microwave-assisted organic synthesis, the question of microwave effects is still debated. Proper examination of these hypothesized phenomena is encumbered by some specific features of microwave heating. We devise a convenient method to eliminate most of the irreproducibility observed in microwave-heated organic transformations by thermal conditioning of the microwave reactor cavity. To show the utility of this approach, we investigated a reaction of 2-chloropyridine, in which microwave conditions were shown to be beneficial by previous studies. Using our method to ensure proper reproducibility together with fibre optic temperature measurement, the observed differences were traced back to large hidden thermal differences, while non-thermal effects could not be detected in the comparison experiments.
References
[1] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Tetrahedron Lett. 1986, 27, 279.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVKgsLg%3D&md5=d470392b66b0c8ffae0a5f75e9f5e88bCAS |
[2] R. J. Giguere, T. L. Bray, S. M. Duncan, G. Majetich, Tetrahedron Lett. 1986, 27, 4945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlykt70%3D&md5=567ef08e01d2fce22b7223e67968b676CAS |
[3] D. Bogdal, Microwave-Assisted Organic Synthesis: One Hundred Reaction Procedures 2005 (Elsevier: Amsterdam).
[4] Microwave Assisted Organic Synthesis (Eds J. P. Tierney, P. Lidström) 2005 (Blackwell Publishing Ltd: Oxford, UK).
[5] C. O. Kappe, D. Dallinger, S. S. Murphree, Practical Microwave Synthesis for Organic Chemists 2009 (Wiley-VCH: Weinheim, Germany).
[6] Microwave Heating as a Tool for Sustainable Chemistry (Ed. N. E. Leadbeater) 2010 (CRC Press: Boca Raton, FL).
[7] Microwaves in Organic Synthesis 3rd ed. (Eds A. de la Hoz, A. Loupy) 2012 (Wiley-VCH: Weinheim, Germany).
[8] C. O. Kappe, A. Stadler, D. Dallinger, Microwaves in Organic and Medicinal Chemistry 2nd ed. 2012 (Wiley-VCH: Weinheim, Germany).
[9] D. M. P. Mingos, D. R. Baghurst, Chem. Soc. Rev. 1991, 20, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVOksrg%3D&md5=f0dd7aa6787e3d56217f1616d0f18565CAS |
[10] S. Caddick, Tetrahedron 1995, 51, 10403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1Wquro%3D&md5=747ca03725233bde658abb6bf1ef5749CAS |
[11] C. R. Strauss, R. W. Trainor, Aust. J. Chem. 1995, 48, 1665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFOrs7k%3D&md5=f81097319599f134e556193f4349ca87CAS |
[12] S. A. Galema, Chem. Soc. Rev. 1997, 26, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Wmurc%3D&md5=d17e22ca446837d51b7cae4f15f6b166CAS |
[13] F. Langa, P. de la Cruz, A. de la Hoz, A. Díaz-Ortiz, E. Díez-Barra, Contemp. Org. Synth. 1997, 4, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVKgt7o%3D&md5=d4b08dc360fd1969d3d17a96083712eeCAS |
[14] A. Stadler, C. O. Kappe, Eur. J. Org. Chem 2001, 2001, 919.
| Crossref | GoogleScholarGoogle Scholar |
[15] P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron 2001, 57, 9225.
| Crossref | GoogleScholarGoogle Scholar |
[16] L. Perreux, A. Loupy, Tetrahedron 2001, 57, 9199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFWlsrk%3D&md5=e1dcbdae1cedee1ac65f88958d6d245eCAS |
[17] M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res. 2002, 35, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslehsLo%3D&md5=73293ba8bc921e80c51dbca00af5afa3CAS | 12234201PubMed |
[18] C. O. Kappe, Angew. Chem., Int. Ed. Engl. 2004, 43, 6250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWrtL7O&md5=73e330319da0f7f14fd745190c16be67CAS |
[19] A. de la Hoz, A. Díaz-Ortiz, A. Moreno, Chem. Soc. Rev. 2005, 34, 164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFCrtg%3D%3D&md5=54c5f096eb8f8541eadc3d8065652133CAS | 15672180PubMed |
[20] N. E. Leadbeater, Chem. Commun. 2005, 2881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVygurg%3D&md5=99610f1a5c0413f057d727d760915127CAS |
[21] D. Dallinger, C. O. Kappe, Chem. Rev. 2007, 107, 2563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVKjtLs%3D&md5=afed0a5c7e194a856d5442e0beb2b228CAS | 17451275PubMed |
[22] C. O. Kappe, Chem. Soc. Rev. 2008, 37, 1127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlSit74%3D&md5=73f5397ef7702904f06181866309fb38CAS |
[23] V. Polshettiwar, R. S. Varma, Acc. Chem. Res. 2008, 41, 629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksl2gur4%3D&md5=bd4b4393f7e2607e0255a87dfe5f4e5dCAS | 18419142PubMed |
[24] C. O. Kappe, D. Dallinger, Mol. Diversity 2009, 13, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2hsbg%3D&md5=4215bc1149d513e8a60101ba24f49e5cCAS |
[25] S. Caddick, R. Fitzmaurice, Tetrahedron 2009, 65, 3325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2htro%3D&md5=690768133d96fdf54b1799c280db98d0CAS |
[26] K. Kranjc, M. Kocevar, Curr. Org. Chem. 2010, 14, 1050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVKlsro%3D&md5=01fafffc80afbf1fc130dee4f73f32b4CAS |
[27] K. Kranjc, M. Kocevar, Curr. Org. Chem. 2013, 17, 448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFahuro%3D&md5=a6249b1cd5301c9728412d0f557b9305CAS |
[28] K. Kranjc, M. Kocevar, Curr. Org. Chem. 2013, 17, 457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFahurs%3D&md5=5fa02d1ea7aa942afeac8f6b3573d950CAS |
[29] M. B. Gawande, S. N. Shelke, R. Zboril, R. S. Varma, Acc. Chem. Res. 2014, 47, 1338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslaksr4%3D&md5=ebe40b7d845463980ed2505de9bdc37cCAS | 24666323PubMed |
[30] C. O. Kappe, B. Pieber, D. Dallinger, Angew. Chem., Int. Ed. Engl. 2013, 52, 1088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSlsbzP&md5=125846c9a991f9f45d10db5293739bf2CAS |
[31] G. B. Dudley, A. E. Stiegman, M. R. Rosana, Angew. Chem., Int. Ed. Engl. 2013, 52, 7918.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGrt7zK&md5=e3bed0a867db0dc845edd46f9bd9d85fCAS |
[32] C. O. Kappe, Angew. Chem., Int. Ed. Engl. 2013, 52, 7924.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGktbfI&md5=b20b3bdbf90218efaedd6350dd443217CAS |
[33] S. K. Ritter, Chem. Eng. News 2014, 92, 26.
[34] M. R. Rosana, Y. Tao, A. E. Stiegman, G. B. Dudley, Chem. Sci. 2012, 3, 1240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Ontb0%3D&md5=d5b2b6a7e80964adb9689c7315575b44CAS |
[35] G. B. Dudley, R. Richert, A. E. Stiegman, Chem. Sci. 2015, 6, 2144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVWgs7g%3D&md5=25d5fa8749c098d307cda39700c1842eCAS |
[36] G. Keglevich, I. Greiner, Z. Mucsi, Curr. Org. Chem. 2015, 19, 1436.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOmurzP&md5=15e002d5230746e02f02d1dd63d6c57aCAS |
[37] B. L. Hayes, M. J. Collins, U.S. Patent 6 744 024 2004.
[38] B. L. Hayes, Aldrichimica Acta 2004, 37, 66.
| 1:CAS:528:DC%2BD2cXnvVGgu7g%3D&md5=47defbadab18f362002ca96698bbcda6CAS |
[39] N. E. Leadbeater, S. J. Pillsbury, E. Shanahan, V. A. Williams, Tetrahedron 2005, 61, 3565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1yku7Y%3D&md5=4fc6b58244107c0ec9e1ed0c285e8b84CAS |
[40] C. O. Kappe, Chem. Soc. Rev. 2013, 42, 4977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1ersbY%3D&md5=26331a67668c221076c471820a4c58d7CAS | 23443140PubMed |
[41] S. Hostyn, B. U. W. Maes, G. Van Baelen, A. Gulevskaya, C. Meyers, K. Smits, Tetrahedron 2006, 62, 4676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslCgsbc%3D&md5=e0138dd62c4d222a6aa42f4557ebe004CAS |
[42] M. Hosseini, N. Stiasni, V. Barbieri, C. O. Kappe, J. Org. Chem. 2007, 72, 1417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1KltQ%3D%3D&md5=21bd93cb5bc305b03ad71e7e57a22243CAS | 17288387PubMed |
[43] M. A. Herrero, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2itLjO&md5=cb9f5987d9164d40c80be48e22b8ab32CAS | 18062704PubMed |
[44] B. Bacsa, K. Horváti, S. Bősze, F. Andreae, C. O. Kappe, J. Org. Chem. 2008, 73, 7532.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVChs7jF&md5=fd6ee0517d8bb083108334cd11e3b701CAS | 18729524PubMed |
[45] T. Razzaq, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 6321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlOmtrw%3D&md5=597c0482dc7e224c078059214da3a0a1CAS | 18613726PubMed |
[46] M. Irfan, M. Fuchs, T. N. Glasnov, C. O. Kappe, Chem. – Eur. J. 2009, 15, 11608 .
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlansLrO&md5=b0570e9b85b3786f26690241d8e65f4eCAS | 19774573PubMed |
[47] T. N. Glasnov, S. Findenig, C. O. Kappe, Chem. – Eur. J. 2009, 15, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKgtb0%3D&md5=335f93bc2badb2baa25d584bde4828d5CAS | 19086042PubMed |
[48] R. O. M. A. de Souza, O. A. C. Antunes, W. Kroutil, C. O. Kappe, J. Org. Chem. 2009, 74, 6157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGjs7k%3D&md5=a463f08ae3e2ad79c511c39a960e39d3CAS |
[49] D. Dallinger, M. Irfan, A. Suljanovic, C. O. Kappe, J. Org. Chem. 2010, 75, 5278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVChsbY%3D&md5=2938db2448a0d3bdf26deff5ffa41160CAS | 20670032PubMed |
[50] D. Obermayer, C. O. Kappe, Org. Biomol. Chem. 2010, 8, 114.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFekurfK&md5=db9e145fb6dcdbfc8f91b975572f2002CAS | 20024141PubMed |
[51] M. H. C. L. Dressen, J. E. Stumpel, B. H. P. van de Kruijs, J. Meuldijk, J. A. J. M. Vekemans, L. A. Hulshof, Green Chem. 2009, 11, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvF2ntw%3D%3D&md5=e9825fb20c248727f0013344e7a88f80CAS |
[52] N. E. Leadbeater, L. M. Stencel, E. C. Wood, Org. Biomol. Chem. 2007, 5, 1052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Squ7s%3D&md5=47bdc3852647ec69745770099cc521daCAS | 17377658PubMed |
[53] J. Ramier, E. Renard, D. Grande, Macromol. Chem. Phys. 2012, 213, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOltL8%3D&md5=ec7fee33d1a57ad3be2e3036b436df01CAS |
[54] J. Rigolini, B. Grassl, S. Reynaud, L. Billon, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVagu7jK&md5=012327020a3f4f506ba67be407e38c80CAS |
[55] D. Obermayer, B. Gutmann, C. O. Kappe, Angew. Chem., Int. Ed. Engl. 2009, 48, 8321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12htb%2FE&md5=dd9b0be75b5329ed271307a59b135e1dCAS |
[56] B. Gutmann, D. Obermayer, B. Reichart, B. Prekodravac, M. Irfan, J. M. Kremsner, C. O. Kappe, Chem. – Eur. J. 2010, 16, 12182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12ltLrE&md5=11afd2875fa181d483a192ae78cd2984CAS | 20845418PubMed |
[57] D. Obermayer, M. Damm, C. O. Kappe, Org. Biomol. Chem. 2013, 11, 4949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rsrzO&md5=303c671d61b653933e022c25e2c9b353CAS | 23797332PubMed |
[58] K. A. Yeboah, J. D. Boyd, K. A. Kyeremateng, C. C. Shepherd, I. M. Ingersoll, D. L. Jackson, A. W. Holland, React. Kinet., Mech. Catal. 2014, 112, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptFyktL4%3D&md5=54cf10972b94fabd89868147d6ebee9bCAS |
[59] M. H. C. L. Dressen, B. H. P. van de Kruijs, J. Meuldijk, J. A. J. M. Vekemans, L. A. Hulshof, Org. Process Res. Dev. 2007, 11, 865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Knt70%3D&md5=1afce464308c116554cc5d8913397fbcCAS |
[60] Y.-J. Cherng, Tetrahedron 2002, 58, 4931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFKmtro%3D&md5=f5b27e7f0c58c9da7ae4444fae044319CAS |
[61] S. Narayan, T. Seelhammer, R. E. Gawley, Tetrahedron Lett. 2004, 45, 757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSiurbI&md5=4da44c9297953023d79debec17a2b5cbCAS |
[62] R. S. Yaunner, J. C. Barros, J. F. M. Silva, Appl. Organomet. Chem. 2012, 26, 273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1ekur0%3D&md5=5407c5c88fc0971d0c13fc62a509612dCAS |
[63] B. U. Maes, K. T. Loones, G. L. Lemière, R. A. Dommisse, Synlett 2003, 1822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1WlsL0%3D&md5=4a54d87fe1a34964f38e74066b64e525CAS |
[64] J.-N. Heo, Y. S. Song, B. T. Kim, Tetrahedron Lett. 2005, 46, 4621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWgsrk%3D&md5=4b1624b237fcf0036f5c1a0386b10b33CAS |
[65] O.-I. Patriciu, A.-L. Fînaru, S. Massip, J.-M. Léger, C. Jarry, G. Guillaumet, Eur. J. Org. Chem. 2009, 3753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOkt7Y%3D&md5=e099a2e433811d32ac3db7b1bc543029CAS |
[66] Z.-J. Liu, J.-P. Vors, E. R. F. Gesing, C. Bolm, Green Chem. 2011, 13, 42.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1KitQ%3D%3D&md5=2de8e5f58e698523f7f5a47fe14a08bfCAS |
[67] R. K. Arvela, N. E. Leadbeater, J. Org. Chem. 2003, 68, 9122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVWqtbs%3D&md5=db16dca553a1ab11b01443b62ae501afCAS | 14604393PubMed |
[68] R. R. Srivastava, S. E. Collibee, Tetrahedron Lett. 2004, 45, 8895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1SrsLc%3D&md5=98d23353df3ac223487de2f0f515b515CAS |
[69] M. Harmata, X. Hong, S. K. Ghosh, Tetrahedron Lett. 2004, 45, 5233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksl2msrk%3D&md5=6b74f091ab9ce9bc7c6ec956aab44482CAS |
[70] D. Villemin, M. J. Gómez-Escalonilla, J.-F. Saint-Clair, Tetrahedron Lett. 2001, 42, 635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFWguw%3D%3D&md5=8d6f5f51d03a9fada38f0016a91ff864CAS |
[71] D. Villemin, F. Caillot, Tetrahedron Lett. 2001, 42, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFWnsg%3D%3D&md5=6599172621559df4512d902be0213f66CAS |
[72] M. Erdélyi, A. Gogoll, J. Org. Chem. 2001, 66, 4165.
| Crossref | GoogleScholarGoogle Scholar | 11397149PubMed |
[73] P. Walla, C. O. Kappe, Chem. Commun. 2004, 564.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlyhurY%3D&md5=49cdc3b93b08b2ec2572987bcf4ab390CAS |
[74] W.-M. Dai, X. Wang, C. Ma, Tetrahedron 2005, 61, 6879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlenurw%3D&md5=05915a881f41ba29206e7958e242d233CAS |
[75] H. Schirok, J. Org. Chem. 2006, 71, 5538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVSit7o%3D&md5=a6476fcdfbb6511b9fdce6edd7e350edCAS | 16839132PubMed |
[76] E. F. DiMauro, J. M. Kennedy, J. Org. Chem. 2007, 72, 1013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlKjsr%2FF&md5=8046cb88090953cf7c1a27fc9df7d8e1CAS | 17253825PubMed |
[77] J. Kempson, S. H. Spergel, J. Guo, C. Quesnelle, P. Gill, D. Belanger, A. J. Dyckman, T. Li, S. H. Watterson, C. M. Langevine, J. Das, R. V. Moquin, J. A. Furch, A. Marinier, M. Dodier, A. Martel, D. Nirschl, K. Van Kirk, J. R. Burke, M. A. Pattoli, K. Gillooly, K. W. McIntyre, L. Chen, Z. Yang, P. H. Marathe, D. Wang-Iverson, J. H. Dodd, M. McKinnon, J. C. Barrish, W. J. Pitts, J. Med. Chem. 2009, 52, 1994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislOitLo%3D&md5=37567e5d30f8a28d50c9e6a26bacd1a8CAS | 19267461PubMed |
[78] A. Reichelt, J. R. Falsey, R. M. Rzasa, O. R. Thiel, M. M. Achmatowicz, R. D. Larsen, D. Zhang, Org. Lett. 2010, 12, 792.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSitLo%3D&md5=f45795a9b79b8bf1e93d552c315dda82CAS | 20099864PubMed |
[79] K. Chunavala, G. Joshi, E. Suresh, S. Adimurthy, Synthesis 2011, 635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFOlsLw%3D&md5=43251a39238f8278baecc52f1f5577daCAS |
[80] C. Ma, Q. Zhang, K. Ding, L. Xin, D. Zhang, Tetrahedron Lett. 2007, 48, 7476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOmurrF&md5=3426960b9c5633932aa3cf1775466de7CAS |
[81] E. L. Lanni, M. A. Bosscher, B. D. Ooms, C. A. Shandro, B. A. Ellsworth, C. E. Anderson, J. Org. Chem. 2008, 73, 6425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1ersrw%3D&md5=6219067f937f40834a1d2a60670b851dCAS | 18610979PubMed |
[82] S. Z. Tasker, M. A. Bosscher, C. A. Shandro, E. L. Lanni, K. A. Ryu, G. S. Snapper, J. M. Utter, B. A. Ellsworth, C. E. Anderson, J. Org. Chem. 2012, 77, 8220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yhsLjI&md5=b376d923877cba31866fa18f2e33301eCAS | 22928642PubMed |
[83] H. Grube, H. Suhr, Chem. Ber. 1969, 102, 1570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkt1Wgurs%3D&md5=4013b026d14b8bd881758e5d7501b7f8CAS |
[84] S. Hashimoto, S. Otani, T. Okamoto, K. Matsumoto, Heterocycles 1988, 27, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFSrt70%3D&md5=ac90819edcd1e9d871c13e4b6d9023ffCAS |
[85] B. Hamper, E. Tesfu, Synlett 2007, 2257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKmu73F&md5=d0a0764a665f63a523a487a3257f7b0bCAS |
[86] G. Manolikakes, A. Gavryushin, P. Knochel, J. Org. Chem. 2008, 73, 1429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1Whuw%3D%3D&md5=c775fba59c03866104d90851d8976bdaCAS | 18211086PubMed |
[87] G. Toma, K. Fujita, R. Yamaguchi, Eur. J. Org. Chem. 2009, 4586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2kurvI&md5=9703d47b890bc0365c5ab36d05ae47c8CAS |
[88] R. J. Lundgren, A. Sappong-Kumankumah, M. Stradiotto, Chem. – Eur. J. 2010, 16, 1983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjtro%3D&md5=7dad609b9b41a47270edcc8c230086a1CAS | 20024992PubMed |
[89] A. Chartoire, X. Frogneux, A. Boreux, A. M. Z. Slawin, S. P. Nolan, Organometallics 2012, 31, 6947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSmtrfK&md5=3890123636c5f78a0b28cbaba274ce95CAS |
[90] P. Huang, Y.-X. Wang, H.-F. Yu, J.-M. Lu, Organometallics 2014, 33, 1587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFaqtbY%3D&md5=9feecd0b707c15810799fe550cca9bdfCAS |