Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Capto-Dative Stabilization by Thermal Oxidation of 2-Oxo-1,2,3,4-tetrahydropyrimidines*

Hamid R. Memarian A C , Esmael Sanchooli A , Hadi Amiri Rudbari A and Giuseppe Bruno B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran.

B Department of Chemical Sciences, University of Messina, Via F. Stango d’Alcontres 31, 98166 Messina, Italy.

C Corresponding author. Email: memarian@sci.ui.ac.ir

Australian Journal of Chemistry 69(8) 872-880 https://doi.org/10.1071/CH16101
Submitted: 21 February 2016  Accepted: 22 February 2016   Published: 23 March 2016

Abstract

Various 4,6-diaryl substituted 2-oxo-1,2,3,4-tetrahydropyrimidines (THPMs) were oxidized to 2-oxo-1,2-dihydropyrimidines (DHPMs) by potassium peroxydisulfate (PPS) in aqueous acetonitrile solution under thermal conditions. Based on the proposed oxidation reaction mechanism by way of a radical, a capto-dative stabilized radical intermediate, among two possible formed double benzylic/allylic radical centres, governs the type of product formed. Whereas the electron-donating nature of the additional methoxy-substituent enhances the rate of oxidation, its attachment to the radical intermediate decreases the radical stability, simultaneously causing the shift of the radical centre to the capto-dative stabilized benzylic radical centre. The data of the density functional theory computational studies concerning the bond lengths to the radical centres and Mulliken population analysis support the results of the experimental work.


References

[1]  P. Biginelli, Gazz. Chim. Ital. 1893, 23, 360.

[2]  B. Lagu, D. Tian, G. Chiu, D. Nagarathram, J. Fang, Q. Shen, C. Forray, R. W. Ransom, R. S. L. Chang, K. P. Vyas, K. Zhang, C. Gluchowski, Bioorg. Med. Chem. Lett. 2000, 10, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpsVSitw%3D%3D&md5=5b779b2687b03b04edd9b7a75437d717CAS | 10673105PubMed |

[3]  S. Bartolini, A. Mai, M. Artico, N. Paesano, D. Rotill, C. Spadafora, G. Sbardella, J. Med. Chem. 2005, 48, 6776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGqsrrO&md5=a2fce0f8666a55515e6406e012a4bde5CAS | 16250634PubMed |

[4]  R. H. Tale, A. H. Rodge, G. D. Hatnapure, A. P. Keche, Bioorg. Med. Chem. Lett. 2011, 21, 4648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVSrtLs%3D&md5=1146eb6481ca7d028a2b180a3f71a2f0CAS | 21737269PubMed |

[5]  J. P. Wan, Y. Pan, Mini Rev. Med. Chem. 2012, 12, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVKrsro%3D&md5=ab7a007a89b01e184dfa32f177c99e67CAS | 22303940PubMed |

[6]  R. Sharma, S. S. Jadav, S. Yasmin, S. Bhatia, H. Khalilullah, M. J. Ahsan, Med. Chem. Res. 2015, 24, 636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1SltbbL&md5=a8c4e55cd3b039ba313d23da46014d13CAS |

[7]  K. Venkateshwarlu, G. C. Rao, V. Reddy, Y. N. Reddy, J. Iran, Chem. Soc. 2014, 11, 1619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVSitbfE&md5=7f4400e4856eef84953888be7569a5bfCAS |

[8]  V. Pathak, H. K. Maurya, S. Sharma, K. K. Srivastava, A. Gupta, Bioorg. Med. Chem. Lett. 2014, 24, 2892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFGns7c%3D&md5=1974a176b4e36fe4ffcdd7e0e15f5164CAS | 24835631PubMed |

[9]  C. O. Kappe, Acc. Chem. Res. 2000, 33, 879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsl2js7k%3D&md5=3e972f7432c5b656253cb82a4aa4cdb2CAS | 11123887PubMed |

[10]  Z. T. Wang, L. W. Xu, C.-G. Xia, H.-Q. Wang, Tetrahedron Lett. 2004, 45, 7951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFWkurY%3D&md5=5b85230c5bbcba8f3f7fa29630529afcCAS |

[11]  M. Kidwai, P. Misra, Synth. Commun. 1999, 29, 3237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFChsL4%3D&md5=1af42440b88d0af68c6f1687d0648c42CAS |

[12]  R. G. Bacon, W. J. Hanna, D. Stewart, J. Chem. Soc. C 1966, 1384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xks1Git70%3D&md5=bdf0cf272d9c12e9b869d9d5e138f60aCAS |

[13]  Y. M. Li, X. H. Wei, X. A. Li, S. D. Yang, Chem. Commun. 2013, 49, 11701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWmu7vJ&md5=af0e5d72f263ae887b77c5a5f144e6f8CAS |

[14]  M. J. A. Abualreish, Am. J. Chem. 2012, 2, 214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2kt7o%3D&md5=3ec55aa0313c83e40d3808ab4c25aec1CAS |

[15]  H. Ouyang, L. Wang, J. Tian, A. Liang, Z. Jiang, Food Anal. Methods 2013, 6, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Y. Liu, B. Jiang, W. Zhang, Z. Xu, J. Org. Chem. 2013, 78, 966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVyltw%3D%3D&md5=169e32d83a527ad8bccf3b5c88296765CAS | 23294026PubMed |

[17]  S. Yuan, P. Liao, A. N. Alshawabkeh, Environ. Sci. Technol. 2014, 48, 656.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFaltLnK&md5=85fefe738b97bd9f1a82254ef539bec2CAS | 24328192PubMed |

[18]  A. R. Khataee, Environ. Technol. 2010, 31, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOhu7g%3D&md5=3d115177345c1512b450fda96a8cf0e2CAS | 20232681PubMed |

[19]  H. R. Memarian, A. Farhadi, J. Iran, Chem. Soc. 2009, 6, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrs77L&md5=ac3a589fdbfaedf36896fb5d4432f88dCAS |

[20]  H. R. Memarian, A. Farhadi, H. Sabzyan, Ultrason. Sonochem. 2010, 17, 579.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WnsrrJ&md5=b35119a73343c4628cbe9c6c0a91f390CAS | 20022547PubMed |

[21]  H. R. Memarian, M. Soleymani, Ultrason. Sonochem. 2011, 18, 745.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1entr8%3D&md5=3e85b918d711fa8346e9d1678c3e4362CAS | 21075031PubMed |

[22]  H. R. Memarian, A. Farhadi, H. Sabzyan, M. Soleymani, J. Photochem. Photobiol. Chem. 2010, 209, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVOisg%3D%3D&md5=48451434051658b1b5a02d5f5bc25723CAS |

[23]  H. R. Memarian, A. Farhadi, Monatsh. Chem. 2009, 140, 1217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyntb7O&md5=bfd29dd95a2baa258f5e666780fd5a79CAS |

[24]  H. R. Memarian, M. Soleymani, H. Sabzyan, J. Iran, Chem. Soc. 2012, 9, 805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Wju7%2FP&md5=90485c1a9de49096bc989873f567d6f8CAS |

[25]  H. R. Memarian, M. Soleymani, H. Sabzyan, M. Bagherzadeh, H. Ahmadi, J. Phys. Chem. A 2011, 115, 8264.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVCks74%3D&md5=966a4f30477a17b262f0a32fc5e72c4bCAS | 21667977PubMed |

[26]  H. R. Memarian, M. Ranjbar, H. Sabzyan, A. Kiani, C. R. Chim. 2012, 15, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOmtb7O&md5=50412ad8086a72d3dece83516f21023bCAS |

[27]  The absolute term ‘extinction’ is a German word and has now been replaced with ‘absorbance’, but the phrase ‘extinction time’ is still being used.

[28]  I. Fleming, Frontier Orbitals and Organic Chemical Reactions 1976 (John Wiley: London).

[29]  F. Bernardi, N. D. Epiotis, W. Cherry, H. B. Schlegel, M. H. Whangbo, S. Wolfe, J. Am. Chem. Soc. 1976, 98, 469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XovFaitg%3D%3D&md5=54bbbf5aaf4acd74d79a7705bbdf10ffCAS |

[30]  H. G. Viehe, R. Merenyi, L. Stella, Z. Janousek, Angew. Chem. 1979, 18, 917.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  T. Albright, J. Burdett, M.-H. Whangbo, Orbital Interactions in Chemistry 1985 (Wiley: New York, NY).

[32]  D. Crans, T. Clark, P. V. R. Schleyer, Tetrahedron Lett. 1980, 21, 3681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXotlCjtQ%3D%3D&md5=6fa18d98481c9bebfa16ab7c73b49cf3CAS |

[33]  R. Sustmann, H.-G. Korth, Adv. Phys. Org. Chem. 1991, 26, 131.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Ciolowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98 1998 (Gaussian Inc.: Pittsburg, PA).

[35]  H. R. Memarian, E. Sanchooli, Magn. Reson. Chem. 2016, 54, 178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFaqt7%2FI&md5=10025418a7efd0a8e10aeeab89968f7dCAS | 26392043PubMed |