Stability of Polymer Interlayer Modified ITO Electrodes for Organic Solar Cells
Anirudh Sharma A , Zandra George B , Trystan Bennett C , David A. Lewis D , Gregory F. Metha C , Gunther G. Andersson D and Mats R. Andersson A EA Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia.
B Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Goteborg, Sweden.
C Department of Chemistry, University of Adelaide, Adelaide, SA 5000, Australia.
D Flinders Centre for Nanoscale Science and Technology, Flinders University, Adelaide, SA 5042, Australia.
E Corresponding author. Email: Mats.Andersson@unisa.edu.au
Australian Journal of Chemistry 69(7) 735-740 https://doi.org/10.1071/CH15806
Submitted: 22 December 2015 Accepted: 17 February 2016 Published: 22 March 2016
Abstract
Indium-tin-oxide (ITO) electrode surfaces were modified using thin polymeric films of ethoxylated polyethylenimine (PEIE) and poly(3,3′-([(9′,9′-dioctyl-9H,9′H-[2,2′-bifluorene]-9,9-diyl)bis(4,1-phenylene)]bis(oxy))bis(N,N-dimethylpropan-1-amine)) (PFPA-1) to investigate the resultant work function and its stability in ambient atmosphere. Both PEIE and PFPA-1 were found to significantly reduce the ITO work function, as a result of a surface dipole at the ITO–polymer interface. After aging for two weeks in ambient air atmosphere, the N-side groups and OH groups in PEIE-modified ITO were found to realign themselves away from the polymer surface, resulting in an orientation more parallel to the surface normal and thus in an increase in work function from 3.5 to 3.8 eV. The work function of PFPA-1-modified ITO was found to increase from 3.65 to 4.1 eV after two weeks of aging in air due to a complete re-orientation of the polar side chains away from the surface, aligning the dipoles more parallel to the surface normal. In both PEIE and PFPA-1 samples, the hydrophobic aliphatic carbon was found to dominate the polymer surface, after aging.
References
[1] L. Lucera, P. Kubis, F. W. Fecher, C. Bronnbauer, M. Turbiez, K. Forberich, T. Ameri, H.-J. Egelhaaf, C. J. Brabec, Energy Technol. 2015, 3, 373.| Crossref | GoogleScholarGoogle Scholar |
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovolt. Res. Appl. 2015, 23, 1.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. Sharma, J. B. Franklin, B. Singh, G. G. Andersson, D. A. Lewis, Org. Electron. 2015, 24, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptFSnt7Y%3D&md5=14b452790c2f523a79ea22429c15a5bbCAS |
[4] A. Sharma, S. E. Watkins, G. Andersson, D. A. Lewis, Energy Technol. 2014, 2, 462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVantro%3D&md5=c33c75166b1d0ee2256186fe705c164fCAS |
[5] W. Tress, K. Leo, M. Riede, Adv. Funct. Mater. 2011, 21, 2140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslKltL0%3D&md5=26b9329bdf9e9745b6142e2aa738e908CAS |
[6] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, Appl. Phys. Lett. 2002, 80, 1288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSiurk%3D&md5=cdabe67cc8ad36bb6f66c02da89f1113CAS |
[7] A. Sharma, G. Andersson, D. A. Lewis, Phys. Chem. Chem. Phys. 2011, 13, 4381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1yksLs%3D&md5=73ca8b4ebd1a3dd51270d5045c888bb8CAS | 21258707PubMed |
[8] A. Sharma, S. E. Watkins, D. A. Lewis, G. Andersson, Sol. Energy Mater. Sol. Cells 2011, 95, 3251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ymsLrI&md5=8e6942c7ebebd450a0cf20faa9d7891bCAS |
[9] M. Jørgensen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 686.
| Crossref | GoogleScholarGoogle Scholar |
[10] A. Loiudice, A. Rizzo, L. De Marco, M. R. Belviso, G. Caputo, P. D. Cozzoli, G. Gigli, Phys. Chem. Chem. Phys. 2012, 14, 3987.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislOqsbw%3D&md5=7e4851a8738070b93cf089126980d75bCAS | 22322967PubMed |
[11] H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 2008, 92, 173303.
| Crossref | GoogleScholarGoogle Scholar |
[12] F. C. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGnt7o%3D&md5=6c2e58a01ce27abc2ff52635f9f55eafCAS |
[13] W.-H. Baek, I. Seo, T.-S. Yoon, H. H. Lee, C. M. Yun, Y.-S. Kim, Sol. Energy Mater. Sol. Cells 2009, 93, 1587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWls70%3D&md5=c1a1c945b3a35b0bc0a57f0cb41a7b56CAS |
[14] Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li, G. Cao, Adv. Funct. Mater. 2012, 22, 2194.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOltr0%3D&md5=fcb77ffb9265a2db18a61db3af8c19aaCAS |
[15] T. T. Larsen-Olsen, F. Machui, B. Lechene, S. Berny, D. Angmo, R. Søndergaard, N. Blouin, W. Mitchell, S. Tierney, T. Cull, P. Tiwana, F. Meyer, M. Carrasco-Orozco, A. Scheel, W. Lövenich, R. de Bettignies, C. J. Brabec, F. C. Krebs, Adv. Energy Mater. 2012, 2, 1091.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFags7rL&md5=8f154d63fd47a660ef4cd1196e7eb41cCAS |
[16] C.-C. Chen, W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, Y. Yang, Adv. Mater. 2014, 26, 5670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFGmurbN&md5=5971912f492a355766bb5ab82a8cda6dCAS | 25043698PubMed |
[17] C. Duan, C. Zhong, C. Liu, F. Huang, Y. Cao, Chem. Mater. 2012, 24, 1682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFCrs78%3D&md5=614264b4e9d2cf584afdfe3d112a8e85CAS |
[18] S. van Reenen, S. Kouijzer, R. A. J. Janssen, M. M. Wienk, M. Kemerink, Adv. Mater. Interfaces 2014, 1, 1400189.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G. C. Bazan, Y. Cao, J. Mater. Chem. 2010, 20, 2617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Kiu78%3D&md5=883abab7966b53541156aadfb9c03292CAS |
[20] J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 8416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Gnsbw%3D&md5=e08a41b81f25a8a1fc65c25ce879b342CAS | 21557557PubMed |
[21] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 2012, 6, 591.
[22] Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, B. Kippelen, Science 2012, 336, 327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlslOqtrk%3D&md5=16f10289f66f60c7658bc3f6197f9e91CAS | 22517855PubMed |
[23] Z. Tang, L. M. Andersson, Z. George, K. Vandewal, K. Tvingstedt, P. Heriksson, R. Kroon, M. R. Andersson, O. Inganäs, Adv. Mater. 2012, 24, 554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt12hsw%3D%3D&md5=fcb0dc518576652856004947483295d4CAS | 22250035PubMed |
[24] Z. Tang, W. Tress, Q. Bao, M. J. Jafari, J. Bergqvist, T. Ederth, M. R. Andersson, O. Inganäs, Adv. Energy Mater. 2014, 4, 1400643.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. V. Hoven, A. Garcia, G. C. Bazan, T.-Q. Nguyen, Adv. Mater. 2008, 20, 3793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOjsr%2FE&md5=637ab0e66ca3eab8fbe22fafd69d4ba0CAS |
[26] S. Gutmann, M. Conrad, M. A. Wolak, M. M. Beerbom, R. Schlaf, J. Appl. Phys. 2012, 111, 123710.
| Crossref | GoogleScholarGoogle Scholar |
[27] B. Heinz, H. Morgner, J. Electron Spectrosc. Relat. Phenom. 1998, 96, 83.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVSqu7s%3D&md5=0fd996d229472b1b74ca565723d26c51CAS |
[28] B. Heinz, H. Morgner, Surf. Sci. 1997, 372, 100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFSgsbg%3D&md5=11abd44ad702a4f22fe863db49be773aCAS |
[29] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, G. G. Andersson, J. Phys. Chem. C 2012, 116, 6289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFyls7Y%3D&md5=f4d1f9e11b460ef6ae0c43b547af1c1dCAS |
[30] G. Andersson, C. Ridings, Chem. Rev. 2014, 114, 8361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntFCgsr0%3D&md5=e840386176468f1bdfa10ea987e48dc7CAS | 24779668PubMed |
[31] Z. George, E. Voroshazi, C. Lindqvist, R. Kroon, W. Zhuang, E. Wang, P. Henriksson, A. Hadipour, M. R. Andersson, Sol. Energy Mater. Sol. Cells 2015, 133, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVykt7jJ&md5=400835fa963a7a8624fe0a397219a217CAS |
[32] R. F. Roberts, D. L. Allara, C. A. Pryde, D. N. E. Buchanan, N. D. Hobbins, Surf. Interface Anal. 1980, 2, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXps1Kr&md5=3af473814b73d9666ff6e070a779b4eaCAS |
[33] H. Morgner, in Advances in Atomic, Molecular, and Optical Physics (Eds B. Bederson, H. Walther) 2000, Vol. 42, pp. 387–488 (Elsevier: Amsterdam).
[34] Y. Harada, S. Masuda, H. Ozaki, Chem. Rev. 1997, 97, 1897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvVyhtLk%3D&md5=3d58bb11b3a935fb68d75f552e821f9fCAS | 11848894PubMed |
[35] Y. Zhao, D. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=cc861ed842819ae5ac3119d096252f86CAS |
[36] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=592af84e00c432902e231e287168b4baCAS |
[37] N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem. 2008, 29, 839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslCjtLY%3D&md5=ad98c3fb54fa8ecf42c603b87d15e04fCAS | 17849392PubMed |