Electroanalytical Opportunities Derived from Ion Transfer at Interfaces between Immiscible Electrolyte Solutions
Damien W. M. Arrigan A B , Eva Alvarez de Eulate A and Yang Liu AA Nanochemistry Research Institute & Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
B Corresponding author. Email: d.arrigan@curtin.edu.au
Damien Arrigan studied analytical science (B.Sc.(Hons)) at the National Institute for Higher Education, Dublin (now Dublin City University), and worked in the biotechnology industry for two years before undertaking his Ph.D. in analytical chemistry at the National University of Ireland, Cork, with Professor G. Svehla. He subsequently held research and academic appointments in Ireland and the United Kingdom before arriving in Australia, to Curtin University, at the end of 2009, where he holds a research academic appointment as Professor. His research interests are in electroanalytical chemistry and electrochemical sensors, and he teaches various aspects of analytical chemistry at undergraduate and honours levels. He serves on the advisory board of Analyst and on the editorial board of Journal of Electroanalytical Chemistry, and is editor of the recently published volume, Electrochemical Strategies in Detection Science (Royal Society of Chemistry Books). |
Eva Alvarez de Eulate received her B.Sc.(Hons) degree in chemistry from the Universidad de Navarra, Pamplona, Spain, in 2005, and her M.Sc. degree from University College Cork, Cork, Ireland, in 2008. She was a research assistant at the Institute of Bioengineering of Catalonia, University of Barcelona, during 2008–2010, and subsequently obtained her Ph.D. degree from Curtin University, Perth, Australia (2014). Currently she is a post-doctoral research associate in Professor Damien Arrigan's group at the same university. Her research interests are in solid/liquid and liquid/liquid electrochemical sensors and biosensors. |
Yang Liu obtained her B.Eng. degree from Changchun University of Technology, China, in 2005 and her Ph.D. degree from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, in 2011. She worked as a post-doctoral researcher with Professors Chang Ming Li and Lianxi Zheng at Nanyang Technological University, Singapore, from September 2011 to September 2013. She has been a post-doctoral research associate in Professor Damien Arrigan's group at Curtin University, Australia, since October 2013. Dr Liu's research interests include carbon/metal nanomaterials for electrochemical sensing applications and analytical behaviour of electrochemistry at liquid–liquid interfaces. |
Australian Journal of Chemistry 69(9) 1016-1032 https://doi.org/10.1071/CH15796
Submitted: 18 December 2015 Accepted: 6 March 2016 Published: 19 May 2016
Abstract
This review presents an introduction to electrochemistry at interfaces between immiscible electrolyte solutions and surveys recent studies of this form of electrochemistry in electroanalytical strategies. Simple ion and facilitated ion transfers across interfaces varying from millimetre scale to nanometre scales are considered. Target detection strategies for a range of ions, inorganic, organic, and biological, including macromolecules, are discussed.
References
[1] Z. Samec, Pure Appl. Chem. 2004, 76, 2147.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1emsLw%3D&md5=0153ebd2c51ad32e769f274295606c39CAS |
[2] (a) P. Peljo, H. H. Girault, in Encyclopedia of Analytical Chemistry (Ed. R. A. Meyers) 2012, pp. 1–28 (John Wiley & Sons, Ltd: Hoboken, NJ).
(b) G. Herzog, Analyst 2015, 140, 3888.
| Crossref | GoogleScholarGoogle Scholar |
[3] Z. Samec, E. Samcova, H. H. Girault, Talanta 2004, 63, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1yltrw%3D&md5=904d618ee6a4e5205d1bbae7e0657714CAS | 18969401PubMed |
[4] D. W. M. Arrigan, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2013, 109, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFaju7c%3D&md5=c28a0528e9fc3ac9b3f6820555e5b73cCAS |
[5] (a) Z. Samec, Electrochim. Acta 2012, 84, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GgsLrL&md5=4bfe42838dc0625a3f476502bb4aec06CAS |
(b) R. A. W. Dryfe, in Advances in Chemical Physics (Ed. S. A. Rice) 2009, Vol. 141, pp. 153–215 (John Wiley & Sons, Inc.: Hoboken, NJ).
[6] I. Benjamin, Science 1993, 261, 1558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtlCksr0%3D&md5=b7edcea6337661d90158fdc18e669001CAS |
[7] H. H. Girault, in Electroanalytical Chemistry: A Series of Advances (Eds A. J. Bard, C. G. Zoski) 2010, Vol. 23, pp. 1–104 (Dekker: New York, NY).
[8] (a) S. J. Liu, Q. Li, Y. H. Shao, Chem. Soc. Rev. 2011, 40, 2236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVWju70%3D&md5=ad89f59568bdcf1279d204b4e4e085b2CAS |
(b) Y. X. Wang, J. Velmurugan, M. V. Mirkin, P. J. Rodgers, J. Kim, S. Amemiya, Anal. Chem. 2010, 82, 77.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. J. Rodgers, S. Amemiya, Y. X. Wang, M. V. Mirkin, Anal. Chem. 2010, 82, 84.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. Vanysek, L. B. Ramirez, J. Chil. Chem. Soc. 2008, 53, 1455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVajsbo%3D&md5=fc4da682f65a6c04f5843106afb036faCAS |
[10] Z. Samec, V. Marecek, J. Weber, J. Electroanal. Chem. 1979, 100, 841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltFCntLo%3D&md5=3d775d3f54854a966c1ce4664183e54cCAS |
[11] S. Nishizawa, T. Kamaishi, T. Yokobori, R. Kato, Y. Y. Cui, T. Shioya, N. Teramae, Anal. Sci. 2004, 20, 1559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgs77I&md5=ee26eadf27cf7077649538fdeeb1d6deCAS | 15566150PubMed |
[12] H. Katano, H. Tatsumi, M. Senda, Talanta 2004, 63, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1ylt7c%3D&md5=55be5f5fcc9da1649ad98f7bdc3d8fc7CAS | 18969418PubMed |
[13] (a) P. S. Toth, R. A. W. Dryfe, Analyst 2015, 140, 1947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Slsrs%3D&md5=212f86f9bdc16071f3f1424914d55f02CAS | 25666159PubMed |
(b) A. J. Olaya, P. Y. Ge, H. H. Girault, Electrochem. Commun. 2012, 19, 101.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. Velicky, K. Y. Tam, R. A. W. Dryfe, Anal. Methods 2012, 4, 1207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1ygtbg%3D&md5=f4d2deeb4d96f76cfeabdab8359f0c16CAS |
[15] D. J. Clarke, D. J. Schiffrin, M. C. Wiles, Electrochim. Acta 1989, 34, 767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXks1KmtbY%3D&md5=a0b656f69c719fd97f889435b9857ce3CAS |
[16] G. Taylor, H. H. J. Girault, J. Electroanal. Chem. 1986, 208, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltVCmurw%3D&md5=13b1cdd6d967202651cfab7008e58263CAS |
[17] J. A. Campbell, H. H. Girault, J. Electroanal. Chem. 1989, 266, 465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmsFagug%3D%3D&md5=f0c1be7532e86e584badb5d842b03f7aCAS |
[18] Y. H. Shao, B. Liu, M. V. Mirkin, J. Am. Chem. Soc. 1998, 120, 12700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslCku7Y%3D&md5=d1435450cc72a51cecf9b59a61ae2897CAS |
[19] (a) M. V. Colqui Quiroga, L. M. A. Monzon, L. M. Yudi, Electrochim. Acta 2010, 55, 5840.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWks7s%3D&md5=fd6989c1fdb93a22823ac5e945c5ef88CAS |
(b) M. V. Colqui Quiroga, L. M. A. Monzon, L. M. Yudi, Electrochim. Acta 2011, 56, 7022.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Velicky, K. Y. Tam, R. A. W. Dryfe, J. Electroanal. Chem. 2012, 683, 94.
| Crossref | GoogleScholarGoogle Scholar |
[20] H. Tatsumi, T. Ueda, J. Electroanal. Chem. 2011, 655, 180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCms7c%3D&md5=3a1fe0d9305f8fbee55ca79a0d881e01CAS |
[21] (a) R. A. Hartvig, M. A. Mendez, M. van de Weert, L. Jorgensen, J. Ostergaard, H. H. Girault, H. Jensen, Anal. Chem. 2010, 82, 7699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrt77J&md5=bff167fb2bb28b33aa109dea314135f4CAS | 20735009PubMed |
(b) G. Herzog, P. Eichelmann-Daly, D. W. M. Arrigan, Electrochem. Commun. 2010, 12, 335.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Herzog, M. T. Nolan, D. W. M. Arrigan, Electrochem. Commun. 2011, 13, 723.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Matsui, T. Sakaki, T. Osakai, Electroanalysis 2012, 24, 1164.
| Crossref | GoogleScholarGoogle Scholar |
[22] F. Kivlehan, M. Lefoix, H. A. Moynihan, D. Thompson, V. I. Ogurtsov, G. Herzog, D. W. M. Arrigan, Electrochim. Acta 2010, 55, 3348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFSntLg%3D&md5=66168ed81a9034e2629036e4a4888e62CAS |
[23] (a) B. Su, I. Hatay, A. Trojanek, Z. Samec, T. Khoury, C. P. Gros, J.-M. Barbe, A. Daina, P.-A. Carrupt, H. H. Girault, J. Am. Chem. Soc. 2010, 132, 2655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2qs7w%3D&md5=b0292d677492e88d36ea3c5013c6e287CAS | 20131825PubMed |
(b) V. S. Patil, S. R. Krishna, R. R. Hawaldar, A. B. Gaikwad, S. D. Sathaye, K. R. Patil, J. Colloid Interface Sci. 2011, 358, 238.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. A. Mendez, R. Partovi-Nia, I. Hatay, B. Su, P. Y. Ge, A. Olaya, N. Younan, M. Hojeija, H. H. Girault, Phys. Chem. Chem. Phys. 2010, 12, 15163.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) S. G. Booth, D. P. Cowcher, R. Goodacre, R. A. W. Dryfe, Chem. Commun. 2014, 50, 4482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1aru7w%3D&md5=504aca9ae3cb5df769ec246615bc9899CAS |
(b) J. B. Edel, A. A. Kornyshev, M. Urbakh, ACS Nano 2013, 7, 9526.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) A. Molina, J. A. Ortuno, C. Serna, E. Torralba, J. Gonzalez, Electroanalysis 2010, 22, 1634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCmu7w%3D&md5=9e7b4187a23ca4bd3219a81b4c93ebb1CAS |
(b) H. A. Santos, V. Garcia-Morales, C. M. Pereira, ChemPhysChem 2010, 11, 28.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. W. M. Arrigan, G. Herzog, M. D. Scanlon, J. Strutwolf, in Electroanalytical Chemistry: A Series of Advances (Eds A. J. Bard, C. G. Zoski) 2013, pp. 105–178 (CRC Press: Boca Raton, FL).
[26] (a) T. J. Stockmann, Z. F. Ding, Phys. Chem. Chem. Phys. 2012, 14, 13949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2ru7vF&md5=5b2d2ec8df566a69b78bcf5a7e8bde3dCAS | 22968449PubMed |
(b) M. Durmaz, E. Zor, E. Kocabas, H. Bingol, E. G. Akgemci, Electrochim. Acta 2011, 56, 5316.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. N. Faisal, C. M. Pereira, S. Rho, H. J. Lee, Phys. Chem. Chem. Phys. 2010, 12, 15184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVejtr7N&md5=402bd9a76366e9c8a3e5ea660b2d38b4CAS | 20924514PubMed |
[28] B. Liu, Y. H. Shao, M. V. Mirkin, Anal. Chem. 2000, 72, 510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVOmsrw%3D&md5=e05faeccb890632bcb9ba046b01c989aCAS | 10695136PubMed |
[29] (a) R. Zazpe, C. Hibert, J. O’Brien, Y. H. Lanyon, D. W. M. Arrigan, Lab Chip 2007, 7, 1732.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlahtbfE&md5=68542103bc4e029ded3cd75fc0d044cbCAS | 18030394PubMed |
(b) G. Herzog, V. Beni, Anal. Chim. Acta 2013, 769, 10.
| Crossref | GoogleScholarGoogle Scholar |
[30] (a) A. Mastouri, S. Peulon, N. Bellakhal, A. Chausse, Electrochim. Acta 2014, 130, 818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVahsrc%3D&md5=300b5f4137115e155fd346c7ee2e2a01CAS |
(b) A. Mastouri, S. Peulon, D. Farcage, N. Bellakhal, A. Chausse, Electrochim. Acta 2014, 120, 212.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. J. Lee, G. Lagger, C. M. Pereira, A. F. Silva, H. H. Girault, Talanta 2009, 78, 66.
| Crossref | GoogleScholarGoogle Scholar |
[31] A. Berduque, R. Zazpe, D. W. M. Arrigan, Anal. Chim. Acta 2008, 611, 156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlSqurg%3D&md5=89c24f9f2eff78fc707e607c27a725dbCAS | 18328316PubMed |
[32] M. D. Scanlon, G. Herzog, D. W. M. Arrigan, Anal. Chem. 2008, 80, 5743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1eltLc%3D&md5=56e31e293e8e4da81ed53d14ca10f51eCAS | 18576664PubMed |
[33] (a) P. Vazquez, G. Herzog, C. O’Mahony, J. O’Brien, J. Scully, A. Blake, C. O’Mathuna, P. Galvin, Sens. Actuators B Chem. 2014, 201, 572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFWhsrw%3D&md5=b91644b9cdd3fc522d48cfda6203db7eCAS |
(b) M. Sairi, D. W. M. Arrigan, Talanta 2015, 132, 205.
| Crossref | GoogleScholarGoogle Scholar |
[34] (a) S. Amemiya, Y. Wang, M. V. Mirkin, in Specialist Periodical Reports – Electrochemistry (Eds J. D. Wadhawan, R. G. Compton) 2014, pp. 1–43 (Royal Society of Chemistry: Cambridge).
(b) D. W. M. Arrigan, Analyst 2004, 129, 1157.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. D. Scanlon, D. W. M. Arrigan, Electroanalysis 2011, 23, 1023.
| Crossref | GoogleScholarGoogle Scholar |
[35] (a) F. O. Laforge, J. Carpino, S. A. Rotenberg, M. V. Mirkin, Proc. Natl. Acad. Sci. USA 2007, 104, 11895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVCls7c%3D&md5=2f42f61303383b061e2b9a9f347b9264CAS | 17620612PubMed |
(b) M. Shen, M. L. Colombo, Anal. Methods 2015, 7, 7095.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. D. Scanlon, J. Strutwolf, A. Blake, D. Iacopino, A. J. Quinn, D. W. M. Arrigan, Anal. Chem. 2010, 82, 6115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGmtrg%3D&md5=b0a13a023cd50ae3977b508b20d60b69CAS | 20552973PubMed |
[37] (a) M. Sairi, N. Chen-Tan, G. Neusser, C. Kranz, D. W. M. Arrigan, ChemElectroChem. 2015, 2, 98.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosVKisw%3D%3D&md5=390c8b593f64f1558b7e9972fe7e225bCAS |
(b) Y. Liu, M. Sairi, G. Neusser, C. Kranz, D. W. M. Arrigan, Anal. Chem. 2015, 87, 5486.
| Crossref | GoogleScholarGoogle Scholar |
[38] Q. Li, S. B. Xie, Z. W. Liang, X. Meng, S. J. Liu, H. H. Girault, Y. H. Shao, Angew. Chem. Int. Ed. 2009, 48, 8010.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kju73K&md5=52112ea6f04c3cfa1c01d1b7ac510d28CAS |
[39] M. Shen, R. Ishimatsu, J. Kim, S. Amemiya, J. Am. Chem. Soc. 2012, 134, 9856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvF2nsb4%3D&md5=fdb0dff7f268695ad3f4ec9ad5cac662CAS | 22655578PubMed |
[40] M. Rimboud, R. D. Hart, T. Becker, D. W. M. Arrigan, Analyst 2011, 136, 4674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKjsb3E&md5=a3557afd65427815343630a437af344fCAS | 21858328PubMed |
[41] M. Sairi, J. Strutwolf, R. A. Mitchell, D. S. Silvester, D. W. M. Arrigan, Electrochim. Acta 2013, 101, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFWmsw%3D%3D&md5=66cf652bec153d6e653f4cfcdf789445CAS |
[42] Y. Liu, J. Strutwolf, D. W. M. Arrigan, Anal. Chem. 2015, 87, 4487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFaqt7g%3D&md5=7450b2a4ab7336b11b7d6a8b99f39b46CAS | 25815423PubMed |
[43] T. Ji, Z. Liang, X. Zhu, L. Wang, S. Liu, Y. Shao, Chem. Sci. 2011, 2, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslWltb8%3D&md5=af459db953b58b5d0ba830dd2d66aeccCAS |
[44] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications 2001 (John Wiley and Sons: New York, NY).
[45] (a) Y. Kim, S. Amemiya, Anal. Chem. 2008, 80, 6056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1yqsLc%3D&md5=2618e34e9ef6c125c664d5f1e7f562c1CAS | 18613700PubMed |
(b) B. Kabagambe, A. Izadyar, S. Amemiya, Anal. Chem. 2012, 84, 7979.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Kabagambe, M. B. Garada, R. Ishimatsu, S. Amemiya, Anal. Chem. 2014, 86, 7939.
| Crossref | GoogleScholarGoogle Scholar |
[46] (a) G. A. Crespo, M. Cuartero, E. Bakker, Anal. Chem. 2015, 87, 7729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFGitrfE&md5=d4319d4c6e671a41fd677d7dd61b06efCAS | 26161464PubMed |
(b) M. Cuartero, G. A. Crespo, E. Bakker, Anal. Chem. 2016, 88, 1654.
| Crossref | GoogleScholarGoogle Scholar |
[47] G. A. Crespo, M. G. Afshar, D. Dorokhin, E. Bakker, Anal. Chem. 2014, 86, 1357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktleltg%3D%3D&md5=d583115b31d49fc1d9d6057c4df6185bCAS | 24400738PubMed |
[48] Y. Saito, Rev. Polarogr. 1968, 15, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXpt1GqtA%3D%3D&md5=4c22269926a38ad0c1be61897c3d4feeCAS |
[49] (a) H. J. Lee, P. D. Beattie, B. J. Seddon, M. D. Osborne, H. H. Girault, J. Electroanal. Chem. 1997, 440, 73.
| 1:CAS:528:DyaK2sXnvFSns7Y%3D&md5=1058217528867f1ea489fc8ffc3518f8CAS |
(b) E. Alvarez de Eulate, J. Strutwolf, Y. Liu, K. O’Donnell, D. W. M. Arrigan, Anal. Chem. 2016, 88, 2596.
| Crossref | GoogleScholarGoogle Scholar |
[50] J. Strutwolf, M. D. Scanlon, D. W. M. Arrigan, Analyst 2009, 134, 148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtLjF&md5=a91d7db0748b2fc4341e3225fb4ee985CAS | 19082187PubMed |
[51] (a) J. Strutwolf, D. W. M. Arrigan, Anal. Bioanal. Chem. 2010, 398, 1625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVerur0%3D&md5=1480117b486bfbdb92c14afb5711b29bCAS | 20526766PubMed |
(b) J. Strutwolf, M. D. Scanlon, D. W. M. Arrigan, J. Electroanal. Chem. 2010, 641, 7.
| Crossref | GoogleScholarGoogle Scholar |
[52] C. J. Collins, D. W. M. Arrigan, Anal. Chem. 2009, 81, 2344.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslyjtb8%3D&md5=d04a088595fe5b24724d097360527466CAS | 19215137PubMed |
[53] L. J. Sanchez Vallejo, J. M. Ovejero, R. A. Fernández, S. A. Dassie, Int. J. Electrochem. 2012, 2012, 462197.
| Crossref | GoogleScholarGoogle Scholar |
[54] A. Molina, E. Laborda, R. G. Compton, J. Phys. Chem. C 2014, 118, 18249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFens7vL&md5=2916ed5ab829311a1c5cddb83fb7b020CAS |
[55] A. Molina, C. Serna, J. A. Ortuno, J. Gonzalez, E. Torralba, A. Gil, Anal. Chem. 2009, 81, 4220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1SgsLs%3D&md5=8e10282131fbd43f6ad951959d046a48CAS | 19402678PubMed |
[56] X. H. Jiang, K. Gao, D. P. Hu, H. H. Wang, S. J. Bian, Y. Chen, Analyst 2015, 140, 2823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXislCjsLg%3D&md5=f139999fd7f4883b3e62f517457d12b7CAS |
[57] M. Velicky, K. Y. Tam, R. A. W. Dryfe, Anal. Chem. 2014, 86, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2rsrnJ&md5=bb90b8f320dfb79ae6af5b57f4f4e1f4CAS | 24299270PubMed |
[58] (a) O. Shirai, S. Kihara, Y. Yoshida, M. Matsui, J. Electroanal. Chem. 1995, 389, 61.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. M. Ulmeanu, H. Jensen, Z. Samec, G. Bouchard, P. A. Carrupt, H. H. Girault, J. Electroanal. Chem. 2002, 530, 10.
| Crossref | GoogleScholarGoogle Scholar |
[59] M. A. Deryabina, S. H. Hansen, H. Jensen, Anal. Chem. 2011, 83, 7388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmtLfM&md5=f7328bbdb5f040de310f6f000285a7a8CAS | 21827175PubMed |
[60] D. P. Hu, H. H. Wang, K. Gao, X. H. Jiang, M. Wang, Y. F. Long, Y. Chen, RSC Adv. 2014, 4, 57035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWmtrfL&md5=6402c908fb5b091753aa5e76a6c9371aCAS |
[61] (a) V. Marecek, H. Janchenova, J. Electroanal. Chem. 2003, 558, 119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlymu7c%3D&md5=6a69459b97c4cff1ac0edb851558507aCAS |
(b) L. Poltorak, G. Herzog, A. Walcarius, Electrochem. Commun. 2013, 37, 76.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Poltorak, M. Dossot, G. Herzog, A. Walcarius, Phys. Chem. Chem. Phys. 2014, 16, 26955.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Poltorak, G. Herzog, A. Walcarius, Langmuir 2014, 30, 11453.
| Crossref | GoogleScholarGoogle Scholar |
[62] J. Koryta, Electrochim. Acta 1979, 24, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXls1ensbs%3D&md5=5cb3b0252913587f74be889ae097a423CAS |
[63] (a) F. Reymond, P. A. Carrupt, H. H. Girault, J. Electroanal. Chem. 1998, 449, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1Crt7o%3D&md5=66e7ce12b58bbfc74518a55a1d6d0ed1CAS |
(b) F. Reymond, G. Lagger, P.-A. Carrupt, H. H. Girault, J. Electroanal. Chem. 1998, 451, 59.
| Crossref | GoogleScholarGoogle Scholar |
[64] H. Matsuda, Y. Yamada, K. Kanamori, Y. Kudo, Y. Takeda, Bull. Chem. Soc. Jpn. 1991, 64, 1497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktlOgu7w%3D&md5=e5a4133c4f37b87419f3f12869f96821CAS |
[65] R. Ishimatsu, A. Izadyar, B. Kabagambe, Y. Kim, J. Kim, S. Amemiya, J. Am. Chem. Soc. 2011, 133, 16300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sltb%2FF&md5=5a28d46fed6fd9250dab68cee327e740CAS | 21882873PubMed |
[66] (a) G. Girma, L. J. Yu, L. Huang, S. Jin, D. Y. Wu, D. P. Zhan, Anal. Methods 2013, 5, 4666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlChu7%2FO&md5=761eecb5922181cc01002b5157bc5d7cCAS |
(b) Y. H. Shao, M. V. Mirkin, J. Am. Chem. Soc. 1997, 119, 8103.
| Crossref | GoogleScholarGoogle Scholar |
[67] Y. H. Qiao, B. Zhang, X. Y. Zhu, T. R. Ji, B. Li, Q. Li, E. Q. Chen, Y. H. Shao, Electroanalysis 2013, 25, 1080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlant7s%3D&md5=7803c3bd2fff210bdbbdc83c2fc8b767CAS |
[68] (a) D. P. Zhan, S. N. Mao, Q. Zhao, Z. Chen, H. Hu, P. Jing, M. Q. Zhang, Z. W. Zhu, Y. H. Shao, Anal. Chem. 2004, 76, 4128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlWmsbc%3D&md5=d3b9683d17b898a6346aad9d4012c785CAS |
(b) D. W. M. Arrigan, M. Ghita, V. Beni, Chem. Commun. 2004, 732.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Ribeiro, I. M. Miranda, F. Silva, C. M. Pereira, Phys. Chem. Chem. Phys. 2010, 12, 15190.
| Crossref | GoogleScholarGoogle Scholar |
[69] Y. Chen, Y. Yuan, M. Q. Zhang, F. Li, P. Sun, Z. Gao, Y. H. Shao, Sci. China, Ser. B: Chem. 2004, 47, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFKqurg%3D&md5=d54df8a19e2c89b7d35ae4cdba0a9ea8CAS |
[70] J. Wickens, R. A. W. Dryfe, F. S. Mair, R. G. Pritchard, R. Hayes, D. W. M. Arrigan, New J. Chem. 2000, 24, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtl2ks70%3D&md5=bf85792456f4929e4c7c1caf515db25fCAS |
[71] (a) J. Zhang, A. R. Harris, R. W. Cattrall, A. M. Bond, Anal. Chem. 2010, 82, 1624.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKrsbc%3D&md5=8c3e3d6a563b848f7466907e60d0fc84CAS | 20121252PubMed |
(b) A. R. Harris, J. Zhang, R. W. Cattrall, A. M. Bond, Anal. Methods 2013, 5, 3840.
| Crossref | GoogleScholarGoogle Scholar |
[72] M. Ghahraman Afshar, G. A. Crespo, E. Bakker, Biosens. Bioelectron. 2014, 61, 64.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsrjK&md5=c70ac4e216a522cfdceea4fa0440bed0CAS |
[73] G. A. Crespo, E. Bakker, RSC Adv. 2013, 3, 25461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyhtbbI&md5=0a5871363a5bdf8e1e1cf9f9f668ba05CAS |
[74] U. Nestor, H. M. Wen, G. Girma, Z. Q. Mei, W. K. Fei, Y. Yang, C. Z. Zhang, D. P. Zhan, Chem. Commun. 2014, 50, 1015.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOntbfI&md5=1feb02a53d2bc5b9e95aef5e55a85415CAS |
[75] C. M. Pereira, N. Tirilly, M. C. Martins, F. Silva, Fresenius J. Anal. Chem. 2001, 369, 609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislKrtL0%3D&md5=fa22d8958834206cb9bc5840b796234eCAS | 11371057PubMed |
[76] S. H. Lee, J. Sumranjit, P. Tongkate, B. H. Chung, H. J. Lee, Electrochim. Acta 2014, 123, 198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvFSisL4%3D&md5=cf2c1923acf0e7db1a55b648033e9afbCAS |
[77] H. Bingol, T. Atalay, Cent. Eur. J. Chem. 2010, 8, 1132.
| 1:CAS:528:DC%2BC3cXhtFWksrzP&md5=7d18ffdf8f1e8eb5d5244a869a11cc8cCAS |
[78] C. M. Pereira, J. M. Oliveira, R. M. Silva, F. Silva, Anal. Chem. 2004, 76, 5547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt12ksbY%3D&md5=945f3f8557c37e237bd1de41785c39b9CAS | 15362919PubMed |
[79] M. M. Hossain, S. N. Faisal, C. S. Kim, H. J. Cha, S. C. Nam, H. J. Lee, Electrochem. Commun. 2011, 13, 611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVSqsrY%3D&md5=e553a244b1d53890b0d28e7bccf8666cCAS |
[80] F. Kivlehan, W. J. Mace, H. A. Moynihan, D. W. M. Arrigan, Anal. Chim. Acta 2007, 585, 154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWjsb4%3D&md5=57bf1240a3fa0273333e262ba4527cdfCAS | 17386660PubMed |
[81] S. Nishizawa, T. Yokobori, R. Kato, K. Yoshimoto, T. Kamaishi, N. Teramae, Analyst 2003, 128, 663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlOjtLs%3D&md5=b6d0cb783102b1402e44ce20ed1132b0CAS | 12866885PubMed |
[82] R. F. Cui, Q. Li, D. E. Gross, X. Meng, B. Li, M. Marquez, R. H. Yang, J. L. Sessler, Y. H. Shao, J. Am. Chem. Soc. 2008, 130, 14364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1WjsrzJ&md5=176895df0d4ed63b24892ab79ea42666CAS |
[83] R. A. W. Dryfe, S. S. Hill, A. P. Davis, J. B. Joos, E. P. L. Roberts, Org. Biomol. Chem. 2004, 2, 2716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFCns7Y%3D&md5=6634b664aee10c7128bf970fbc823798CAS |
[84] P. D. Beer, P. A. Gale, Angew. Chem. Int. Ed. 2001, 40, 486.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVSrurc%3D&md5=0b8794255fa48a4e7500aaaa3a315ad5CAS |
[85] P. Bühlmann, L. D. Chen, in Supramolecular Chemistry (Eds P. A. Gale, J. W. Steed) 2012, pp. 2539–2577 (John Wiley & Sons, Ltd: Hoboken, NJ).
[86] P. Buhlmann, E. Pretsch, E. Bakker, Chem. Rev. 1998, 98, 1593.
| Crossref | GoogleScholarGoogle Scholar | 11848943PubMed |
[87] (a) R. A. W. Dryfe, S. M. Holmes, J. Electroanal. Chem. 2000, 483, 144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVCiur4%3D&md5=0899d31d73049fb3c7970f20d512cf82CAS |
(b) R. A. W. Dryfe, Phys. Chem. Chem. Phys. 2006, 8, 1869.
| Crossref | GoogleScholarGoogle Scholar |
[88] C. I. Camara, C. A. Bornancini, J. L. Cabrera, M. G. Ortega, L. M. Yudi, Talanta 2010, 83, 623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ktbzM&md5=101b8270734e0165257deb3b2390eec8CAS | 21111183PubMed |
[89] D. W. M. Arrigan, Anal. Lett. 2008, 41, 3233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOgtrjE&md5=a5f308f566fc3657d2ba41ac14246507CAS |
[90] (a) C. J. Collins, A. Berduque, D. W. M. Arrigan, Anal. Chem. 2008, 80, 8102.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ahs7bP&md5=ca47b5b185ae6da1a621211ab666ad16CAS | 18841995PubMed |
(b) C. J. Collins, C. Lyons, J. Strutwolf, D. W. M. Arrigan, Talanta 2010, 80, 1993.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Fantini, J. Clohessy, K. Gorgy, F. Fusalba, C. Johans, K. Kontturi, V. J. Cunnane, Eur. J. Pharm. Sci. 2003, 18, 251.
| Crossref | GoogleScholarGoogle Scholar |
[91] P. Lopes, R. Kataky, Anal. Chem. 2012, 84, 2299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFahtw%3D%3D&md5=61fcc9bb2c010ba3b66129f7a0610a4aCAS | 22250754PubMed |
[92] H. R. Kim, C. M. Pereira, H. Y. Han, H. J. Lee, Anal. Chem. 2015, 87, 5356.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvVynsb8%3D&md5=dbeac82f5eb6b4db8a8e9f9b773b3a7aCAS | 25896494PubMed |
[93] (a) J. A. Ribeiro, F. Silva, C. M. Pereira, Anal. Chem. 2013, 85, 1582.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1antQ%3D%3D&md5=81f4f1405b23fef18e8f91a8fb29764fCAS | 23301839PubMed |
(b) J. A. Ribeiro, C. M. Pereira, F. Silva, Electrochim. Acta 2015, 180, 687.
| Crossref | GoogleScholarGoogle Scholar |
[94] (a) V. Beni, M. Ghita, D. W. M. Arrigan, Biosens. Bioelectron. 2005, 20, 2097.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsleit7Y%3D&md5=e6158cb3c8083a4ff4c148b1b186ab65CAS | 15741080PubMed |
(b) O. Dvorak, V. Marecek, Z. Samec, J. Electroanal. Chem. 1991, 300, 407.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Homolka, V. Marecek, Z. Samec, K. Base, H. Wendt, J. Electroanal. Chem. 1984, 163, 159.
| Crossref | GoogleScholarGoogle Scholar |
[95] J. A. Ribeiro, F. Silva, C. M. Pereira, Electroanalysis 2013, 25, 2331.
| 1:CAS:528:DC%2BC3sXhtlyrsbnP&md5=2b33f33a01e3802d0a5a586c276df79dCAS |
[96] E. Torralba, J. A. Ortuno, A. Molina, C. Serna, F. Karimian, Anal. Chim. Acta 2014, 826, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVWgs74%3D&md5=812ef4d9ac14dcb9df1d800d6efcb76eCAS | 24793848PubMed |
[97] A. Izadyar, D. R. Arachchige, H. Cornwell, J. C. Hershberger, Sens. Actuators B Chem. 2016, 223, 226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1KqsrzL&md5=4ec22e518cd9794bb041fb51a71225edCAS |
[98] M. L. Colombo, J. V. Sweedler, M. Shen, Anal. Chem. 2015, 87, 5095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFans70%3D&md5=8b9a7c98ea5f24745817e84b51b41614CAS | 25877788PubMed |
[99] M. L. Colombo, S. McNeil, N. Iwai, A. Chang, M. Shen, J. Electrochem. Soc. 2016, 163, H3072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjs12nsbw%3D&md5=2691baf4ed9335dd9feec7319272dcf6CAS |
[100] G. Herzog, D. W. M. Arrigan, Analyst 2007, 132, 615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVOmsrk%3D&md5=6787f4614121e7094750fdcf4920598dCAS | 17592579PubMed |
[101] P. Vanysek, J. D. Reid, M. A. Craven, R. P. Buck, J. Electrochem. Soc. 1984, 131, 1788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsl2ksbg%3D&md5=0445221aa9288221fe67c2a70b3f27ecCAS |
[102] M. A. Mendez, Z. Nazemi, I. Uyanik, Y. Lu, H. H. Girault, Langmuir 2011, 27, 13918.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCmurvJ&md5=c6a84c69c95d0a439c9b24d0edcc8162CAS | 21962026PubMed |
[103] E. Alvarez de Eulate, S. O’Sullivan, S. Fletcher, P. Newsholme, D. W. M. Arrigan, Chem. Asian J. 2013, 8, 2096.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVClu70%3D&md5=a269801f09c479f8cb113361b947f175CAS |
[104] (a) S. Amemiya, X. T. Yang, T. L. Wazenegger, J. Am. Chem. Soc. 2003, 125, 11832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1OgsL0%3D&md5=2aaa312f91519153d43b417895430549CAS | 14505401PubMed |
(b) Y. Yuan, S. Amemiya, Anal. Chem. 2004, 76, 6877.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Trojanek, J. Langmaier, E. Samcova, Z. Samec, J. Electroanal. Chem. 2007, 603, 235.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. B. Garada, B. Kabagambe, S. Amemiya, Anal. Chem. 2015, 87, 5348.
| Crossref | GoogleScholarGoogle Scholar |
[105] (a) F. Kivlehan, Y. H. Lanyon, D. W. M. Arrigan, Langmuir 2008, 24, 9876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Sgurg%3D&md5=ee9bd8af9b16e3defc6a694e2256fd9fCAS | 18666786PubMed |
(b) A. E. Thomsen, H. Jensen, L. Jorgensen, M. van de Weert, J. Ostergaard, Colloids Surf. B 2008, 63, 243.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. O’Sullivan, E. Alvarez de Eulate, Y. H. Yuen, E. Helmerhorst, D. W. M. Arrigan, Analyst 2013, 138, 6192.
| Crossref | GoogleScholarGoogle Scholar |
[106] S. O’Sullivan, D. W. M. Arrigan, Electrochim. Acta 2012, 77, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVams73E&md5=55da0afd01fa1c508fcc01d113500b58CAS |
[107] (a) G. C. Lillie, S. M. Holmes, R. A. W. Dryfe, J. Phys. Chem. B 2002, 106, 12101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVWltr0%3D&md5=38ed2bff360ba60070590a5ea171bd99CAS |
(b) Y. Imai, T. Sugihara, T. Osakai, J. Phys. Chem. B 2012, 116, 585.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. O’Sullivan, D. W. M. Arrigan, Anal. Chem. 2013, 85, 1389.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Osakai, A. Shinohara, Anal. Sci. 2008, 24, 901.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. Osakai, Y. Yuguchi, E. Gohara, H. Katano, Langmuir 2010, 26, 11530.
| Crossref | GoogleScholarGoogle Scholar |
[108] (a) M. D. Scanlon, E. Jennings, D. W. M. Arrigan, Phys. Chem. Chem. Phys. 2009, 11, 2272.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVWms74%3D&md5=7756f80883a8a06e21242ab4a50c9d34CAS | 19305901PubMed |
(b) E. Alvarez de Eulate, D. W. M. Arrigan, Anal. Chem. 2012, 84, 2505.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Alvarez de Eulate, D. S. Silvester, D. W. M. Arrigan, Chem. Asian J. 2012, 7, 2559.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. G. Chernysheva, O. A. Soboleva, G. A. Badun, Colloids Surf. A 2012, 409, 130.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Alvarez de Eulate, L. Qiao, M. D. Scanlon, H. H. Girault, D. W. M. Arrigan, Chem. Commun. 2014, 50, 11829.
| Crossref | GoogleScholarGoogle Scholar |
(f) B. M. B. Felisilda, E. Alvarez de Eulate, D. W. M. Arrigan, Anal. Chim. Acta 2015, 893, 34.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. D. Scanlon, J. Strutwolf, D. W. M. Arrigan, Phys. Chem. Chem. Phys. 2010, 12, 10040.
| Crossref | GoogleScholarGoogle Scholar |
[109] (a) G. Herzog, V. Kam, D. W. M. Arrigan, Electrochim. Acta 2008, 53, 7204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1akt74%3D&md5=1c324f2fb81442de51034d13fbe6cf36CAS |
(b) G. Herzog, W. Moujahid, J. Strutwolf, D. W. M. Arrigan, Analyst 2009, 134, 1608.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Alvarez de Eulate, L. Serls, D. M. Arrigan, Anal. Bioanal. Chem. 2012, 405, 3801.
| Crossref | GoogleScholarGoogle Scholar |
[110] P. Vanysek, Z. S. Sun, Bioelectrochem. Bioenerg. 1990, 23, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktlKksLk%3D&md5=cf89e1e592141ca5ed0283803b66f8f5CAS |
[111] T. Osakai, T. Hirai, T. Wakamiya, S. Sawada, Phys. Chem. Chem. Phys. 2006, 8, 985.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVKqsL8%3D&md5=b8f71d15fbdc6f60073236f58e140dfbCAS | 16482341PubMed |
[112] G. Herzog, S. Flynn, C. Johnson, D. W. M. Arrigan, Anal. Chem. 2012, 84, 5693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1eksrY%3D&md5=2f91a49b73ad5d078c140543968d16ddCAS | 22642447PubMed |
[113] M. Shinshi, T. Sugihara, T. Osakai, M. Goto, Langmuir 2006, 22, 8614.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlCmsb4%3D&md5=aa0c42f8463c24e54e259c87736d8663CAS |
[114] T. Osakai, H. Komatsu, M. Goto, J. Phys. Condens. Matter 2007, 19, 375103.
| Crossref | GoogleScholarGoogle Scholar |
[115] (a) Z. Samec, A. Trojanek, J. Langmaier, E. Samcova, Electrochem. Commun. 2003, 5, 867.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Wgsbs%3D&md5=35f012a379daf21d8ce2fe7665a75b69CAS |
(b) J. D. Guo, Y. Yuan, S. Amemiya, Anal. Chem. 2005, 77, 5711.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. D. Guo, S. Amemiya, Anal. Chem. 2006, 78, 6893.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Amemiya, Y. Kim, R. Ishimatsu, B. Kabagambe, Anal. Bioanal. Chem. 2011, 399, 571.
| Crossref | GoogleScholarGoogle Scholar |
[116] (a) J. Langmaier, J. Olsak, E. Samcova, Z. Samec, A. Trojanek, Electroanalysis 2006, 18, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGhtr4%3D&md5=fd421b019b6150ff9d9d570ec9b42d4eCAS |
(b) J. Langmaier, J. Olsak, E. Samcova, Z. Samec, A. Trojanek, Electroanalysis 2006, 18, 1329.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Langmaier, Z. Samec, E. Samcova, P. Tuma, Electrochem. Commun. 2012, 24, 25.
| Crossref | GoogleScholarGoogle Scholar |
[117] D. S. Silvester, D. W. M. Arrigan, Electrochem. Commun. 2011, 13, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKkuro%3D&md5=588962180e64abb2b96889808a58859dCAS |
[118] G. Herzog, A. Roger, D. Sheehan, D. W. M. Arrigan, Anal. Chem. 2010, 82, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCitL3P&md5=e793b33a7dd355417c0d9b5de763cd17CAS | 20000486PubMed |