Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

An In Silico Approach of Coumarin-Derived Inhibitors for Human DNA Topoisomerase I

Amali G. Guruge A B , Chandani Udawatte B and Samantha Weerasinghe A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka.

B College of Chemical Sciences, Institute of Chemistry Ceylon, Adamantane House, 341/22, Kotte Road, Welikada, Rajagiriya 10100, Sri Lanka.

C Corresponding author. Email: weera@chem.cmb.ac.lk

Australian Journal of Chemistry 69(9) 1005-1015 https://doi.org/10.1071/CH16232
Submitted: 13 April 2016  Accepted: 3 August 2016   Published: 29 August 2016

Abstract

Human topoisomerase I (Htopo I) is a vital target for anti-cancer agents; however, available anti-cancer agents are linked with several limitations. Therefore, designing novel inhibitors for Htopo I is significant. The rationale behind the current study is to identify novel coumarin inhibitors for Htopo I using in silico approaches and predict drug leads for in vitro studies. Using molecular docking and molecular dynamics, the binding affinities of 75 coumarins were compared with a known Htopo I inhibitor, topotecan. Docking studies predict three coumarins T1L25, T2L25, and T3L25 as most potent inhibitors for Htopo I. T2L25 gives the best grid score (–295 kJ mol–1), which is very comparable with that of topotecan (–302 kJ mol–1). The binding of these coumarins occurs preferentially via a planar geometry, and ligands bind at the binding site parallel to the axis of base pairing. NHCOCH3-substituted ligands are more favourable for binding when compared with the other substitute groups considered. The binding free energies calculated from molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method imply that T3L25 possesses the highest binding affinity when compared with the other two ligands. However, T1L25 and T2L25 have comparable binding free energies according to MM-PBSA calculations. Additionally, other calculated properties also support the suitability of these three derivatives as inhibitors for Htopo I. Therefore, the current study theoretically predicts three coumarin derivatives T1L25, T2L25, and T3L25 as potent inhibitors for Htopo I. These findings could lead to exploring novel non-camptothecin inhibitors for Htopo I.


References

[1]  J. C. Wang, Annu. Rev. Biochem. 1996, 65, 635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFamur0%3D&md5=f02ea130ed6d08a2ac77b35e06e4e3c5CAS | 8811192PubMed |

[2]  A. Y. Chen, L. F. Liu, Annu. Rev. Pharmacol. Toxicol. 1994, 34, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1Sks74%3D&md5=16f7b2ebcd4b7115530fae288d597f1bCAS | 8042851PubMed |

[3]  J. L. Nitiss, Biochim. Biophys. Acta 1998, 1400, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFWju7Y%3D&md5=6dd3e4c9ad9f9178518bb5d0caed67caCAS | 9748506PubMed |

[4]  R. B. Ewesuedo, M. J. Ratain, Oncologist 1997, 2, 359.
         | 1:CAS:528:DyaK1cXlvVCrsrs%3D&md5=1ad9ef5482772100f69e788d958dc333CAS | 10388070PubMed |

[5]  L. F. Liu, S. D. Desai, T. K. Li, Y. Mao, M. Sun, S. P. Sim, Ann. N. Y. Acad. Sci. 2000, 922, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVCltw%3D%3D&md5=b0ff5a01fe44378a2707c5f5059db3daCAS |

[6]  C. J. Thomas, N. J. Rahier, S. M. Hecht, Bioorg. Med. Chem. 2004, 12, 1585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFeqtrw%3D&md5=196caf72a5caac869d26106e6ad92f41CAS | 15028252PubMed |

[7]  L. H. Meng, Z. Y. Liao, Y. Pommier, Curr. Top. Med. Chem. 2003, 3, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1Cksg%3D%3D&md5=8f4240b0c96751feeff5ae86b57933a0CAS | 12570765PubMed |

[8]  B. L. Staker, M. D. Feese, M. Cushman, Y. Pommier, D. Zembower, L. Stewart, A. B. Burgin, J. Med. Chem. 2005, 48, 2336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslajtro%3D&md5=27e33a71dce91b1619e17ea25f9e4443CAS | 15801827PubMed |

[9]  L. G. Dezhenkova, V. B. Tsvetkov, A. A. Shtil, Russ. Chem. Rev. 2014, 83, 82.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  C. Bailly, Crit. Rev. Oncol. Hematol. 2003, 45, 91.
         | Crossref | GoogleScholarGoogle Scholar | 12482574PubMed |

[11]  A. Lauria, M. Ippolito, A. M. Almerico, J. Mol. Model. 2007, 13, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFant7o%3D&md5=18e4b7319511c528ec734bd36377f438CAS | 17072654PubMed |

[12]  Y. Pommier, M. Cushman, Mol. Cancer Ther. 2009, 8, 1008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGqs7c%3D&md5=4fe6fbccc95d4e083fbdcee0062baadfCAS | 19383846PubMed |

[13]  M. N. Drwal, K. Agama, L. P. G. Wakelin, Y. Pommier, R. Griffith, PLoS One 2011, 6, e25150.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWjsL3K&md5=80e4b854d36729dad88010c3ae299409CAS | 21966440PubMed |

[14]  G. L. Beretta, V. Zuco, P. Perego, N. Zaffaroni, Curr. Med. Chem. 2012, 19, 1238.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Kkt74%3D&md5=16518ae49e004d9e27e25cbae8cda651CAS | 22204335PubMed |

[15]  Y. Pommier, Nat. Rev. Cancer 2006, 6, 789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVClsr0%3D&md5=720de214701604b49e626bcbc1b3106bCAS | 16990856PubMed |

[16]  W. A. Cortopassi, J. Penna-Coutinho, A. C. C. Aguiar, A. S. Pimentle, C. D. Buarque, P. R. R. Costa, B. R. M. Alves, T. C. C. França, A. U. Krettli, PLoS One 2014, 9, e91191.
         | Crossref | GoogleScholarGoogle Scholar | 24651068PubMed |

[17]  A. Lacy, R. O’Kennedy, Curr. Pharm. Des. 2004, 10, 3797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlOlu7Y%3D&md5=03ae2b1d188067244cf82c2c8bc08bf5CAS | 15579072PubMed |

[18]  See pp. 263–277 in: J. Bruneton, Pharmacognosy, Phytochemistry, Medicinal Plants 1999 (Lavoisier: Paris).

[19]  X. M. Peng, G. L. V. Damu, C. H. Zhou, Curr. Pharm. Des. 2013, 19, 3884.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSmsr%2FM&md5=2f3e8d4cb5e453e7e9c6bfdc6fadb206CAS | 23438968PubMed |

[20]  B. S. Jayashree, S. Nigam, A. Pai, P. V. R. Chowdary, Arab. J. Chem. 2014, 7, 885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaiurnF&md5=38e148363cd16efbc8932e67a2b8cd73CAS |

[21]  J. R. S. Hoult, M. Payà, Gen. Pharmacol. 1996, 27, 713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1Cltrc%3D&md5=472ba1847406acbd79b70e1c710e7c7bCAS |

[22]  B. Sandhya, D. Giles, V. Mathew, G. Basavarajaswamy, R. Abraham, Eur. J. Med. Chem. 2011, 46, 4696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2rtbvF&md5=7c65996efb3c697e0a8f6e16fff5152cCAS | 21816516PubMed |

[23]  M. M. F. Ismail, H. S. Rateb, M. M. M. Hussein, Eur. J. Med. Chem. 2010, 45, 3950.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFKhsLo%3D&md5=ca7269f1efc47687c2fcf8000babad5cCAS |

[24]  I. Kostova, Expert Opin. Drug Discovery 2007, 2, 1605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVSnsA%3D%3D&md5=c60addb0c9e95e723ebb926c33e4a19aCAS |

[25]  X. Y. Huang, Z. J. Shan, H. L. Zhai, L. Su, X. Y. Zhang, Chem. Biol. Drug Des. 2011, 78, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2hsbvF&md5=5fd2aeef3d0309c502a8f4e7d0f8addfCAS | 21791009PubMed |

[26]  M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminf. 2012, 4, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVGksLg%3D&md5=062ea320d6717be9c1c1c192e8cd4bfaCAS |

[27]  B. L. Staker, K. Hjerrild, M. D. Feese, C. A. Behnke, A. B. Burgin, L. Stewart, Proc. Natl. Acad. Sci. USA 2002, 99, 15387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVGh&md5=4189edcdbbffa75a4a749f80b549db8fCAS | 12426403PubMed |

[28]  E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVOhsbs%3D&md5=288e9c4490ba643db3b33c578c7e3210CAS | 15264254PubMed |

[29]  R. L. Dunbrack, Curr. Opin. Struct. Biol. 2002, 12, 431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvF2rtLY%3D&md5=06b9fec00a01ea772e498209acac89dbCAS | 12163064PubMed |

[30]  J. Gasteiger, M. Marsili, Tetrahedron Lett. 1978, 19, 3181.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  F. M. Richards, Annu. Rev. Biophys. Bioeng. 1977, 6, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXks1CisrY%3D&md5=ee5c32743afa5fbcf14c9d999d1dbde2CAS | 326146PubMed |

[32]  P. T. Lang, S. R. Brozell, S. Mukherjee, E. F. Pettersen, E. C. Meng, V. Thomas, R. C. Rizzo, D. A. Case, T. L. James, I. D. Kuntz, RNA 2009, 15, 1219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFCntrY%3D&md5=171d20e3b54af9e70b0c30e72df52d72CAS | 19369428PubMed |

[33]  R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model. 2011, 51, 2778.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KjtrzP&md5=93d697ca213a2d41a97539cd0ceb18c0CAS | 21919503PubMed |

[34]  D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem. 2005, 26, 1701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SlsbbO&md5=634a9eb0929362199efbf1ad81e4a956CAS | 16211538PubMed |

[35]  E. Lindahl, B. Hess, D. van der Spoel, J. Mol. Model. 2001, 7, 306.
         | 1:CAS:528:DC%2BD3MXnsVGjsL4%3D&md5=630fa3ed526827a98189282761630ea0CAS |

[36]  H. J. C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 1995, 91, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1Wrtr0%3D&md5=53dcc810f9578e539006eede3d324dc8CAS |

[37]  W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 2, 925.

[38]  H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlGksbY%3D&md5=4d6182333a5a2bf55d4bf923ef0dd530CAS |

[39]  B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, J. Comput. Chem. 1997, 18, 1463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvV2nu7g%3D&md5=2b1a0193a13bfb6175db8283712b63a1CAS |

[40]  U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Chem. Phys. 1995, 103, 8577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlehtrw%3D&md5=3417146b9caa477b0adc38a642b4b8c3CAS |

[41]  B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Ciu70%3D&md5=3bdeddca8216dd622912bcdee75992e4CAS | 19444816PubMed |

[42]  V. Zoete, M. A. Cuendet, A. Grosdidier, O. Michielin, J. Comput. Chem. 2011, 32, 2359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlOqtrY%3D&md5=a8ba2b3a0d476acdecdbf124a2a9117aCAS | 21541964PubMed |

[43]  R. Kumari, R. Kumar, A. Lynn, J. Chem. Inf. Model. 2014, 54, 1951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotlWiu7o%3D&md5=7f877500016024996976749c2d477a40CAS | 24850022PubMed |

[44]  H. Gohlke, M. Hendlich, G. Klebe, J. Mol. Biol. 2000, 295, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1Crtw%3D%3D&md5=9ddfc82e8a856ee24f380df752d2a0feCAS |

[45]  P. T. Lang, D. Moustakas, S. Brozell, N. Carrascal, S. Mukherjee, T. Balius, W. J. Allen, P. Holden, S. Pegg, K. Raha, D. Shivakumar, R. Rizzo, D. Case, B. Shoichet, I. Kuntz, Dock 6.7 Users Manual 2015 (University of California: San Francisco, CA).

[46]  M. Baginski, F. Fogolari, J. M. Briggs, J. Mol. Biol. 1997, 274, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVGitbg%3D&md5=77cd453e830cf0693d2168798ed83256CAS | 9398531PubMed |

[47]  R. Abagyan, M. Totrov, D. Kuznetsov, J. Comput. Chem. 1994, 15, 488.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVWisA%3D%3D&md5=64b714b579a28e9092142061da65f9f7CAS |

[48]  G. Mancini, I. D’Annessa, A. Coletta, N. Sanna, G. Chillemi, Y. Pommier, A. Desideri, PLoS One 2010, 5, e10934.
         | Crossref | GoogleScholarGoogle Scholar | 20532182PubMed |

[49]  F. M. Siu, C. M. Che, J. Am. Chem. Soc. 2008, 130, 17928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSisLnP&md5=ef2b5bb0fd18f3693b33b2bf8d86f12fCAS | 19035632PubMed |

[50]  G. Mancini, I. D’Annessa, A. Coletta, G. Chillemi, Y. Pommier, M. Cushman, A. Desideri, PLoS One 2012, 7, e51354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2js7fP&md5=b1caaff371bc4ee5ab0ca8d0f47dd51aCAS | 23236483PubMed |

[51]  G. Chillemi, M. Redinbo, A. Bruselles, A. Desider, Biophys. J. 2004, 87, 4087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOmtbfM&md5=cbb24ab15c2b989a635e5cc2d3a7c155CAS | 15347588PubMed |