Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Diketopyrrolopyrrole-Based Low-Bandgap Conjugated Polymers with Siloxane Side Chains for Electrochromic Applications

Zugui Shi A D , Wei Teng Neo A B D , Hui Zhou A and Jianwei Xu A C E
+ Author Affiliations
- Author Affiliations

A Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Republic of Singapore.

B NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Republic of Singapore.

C Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore.

D These authors contributed equally to this manuscript.

E Corresponding author. Email: jw-xu@imre.a-star.edu.sg

Australian Journal of Chemistry 69(4) 403-410 https://doi.org/10.1071/CH15738
Submitted: 22 November 2015  Accepted: 23 January 2016   Published: 11 February 2016

Abstract

A series of conjugated copolymers P1P3 were synthesized from 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(6-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)hexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione and 2,5-bis(trimethylstannyl)-3,4-dialkoxythiophene or its analogue via Stille coupling reactions, with molecular weights in the range of 13000–18000 g mol–1 and polydispersity indexes of 1.4–1.7. This new type of donor–acceptor polymers demonstrated reasonable switching speed, promising redox stability, together with high optical contrast and coloration efficiency. Although, at the current stage, the hybrid siloxane-terminated side chain did not significantly improve the overall performance of the resultant polymers, the unique chemical properties of the siloxane group would offer possibilities for crosslink after suitable post-polymerization treatment, and thus pave the way for future fine-tuning of the morphology of electrochromic films.


References

[1]  S. K. Deb, J. A. Chopoorian, J. Appl. Phys. 1966, 37, 4818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktFKrsg%3D%3D&md5=1dd1d8b64efa630c3cfa411c5f67fc07CAS |

[2]  T. Yamase, Chem. Rev. 1998, 98, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVSgtg%3D%3D&md5=794bcde9e50a0cb4416b0752c6d59da1CAS | 11851508PubMed |

[3]  C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Rönnow, M. S. Mattsson, M. Veszelei, G. Vaivars, Sol. Energy 1998, 63, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotV2gsb4%3D&md5=55f34de3e638e5251563be1215862d03CAS |

[4]  P. Andersson, R. Forchheimer, P. Tehrani, M. Berggren, Adv. Funct. Mater. 2007, 17, 3074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKktL%2FL&md5=a77befabb4d2dfd1b8fdc6c38babf664CAS |

[5]  P. A. Ersman, J. Kawahara, M. Berggren, Org. Electron. 2013, 14, 3371.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. Li, Y. Wei, J. Zheng, D. Zhu, C. Xu, Org. Electron. 2014, 15, 428.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. Jensen, M. Hösel, A. L. Dyer, F. C. Krebs, Adv. Funct. Mater. 2015, 25, 2073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVWntbc%3D&md5=ba2da51047ad590c456bb25bc5e9e16eCAS |

[8]  C. G. Granqvist, Thin Solid Films 2014, 564, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1Sqtb8%3D&md5=fcc03eaaf6e9e15129c160a7b0d608d4CAS |

[9]  L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi, D. Mandler, J. Mater. Chem. A 2014, 2, 16224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Cks7fM&md5=e5d6fcc6aabcb32f82e9019cbdd9d506CAS |

[10]  S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, A. C. Dillon, Adv. Mater. 2006, 18, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsV2ju7g%3D&md5=2bb6c5eeff9f8f1936e95634faa0b318CAS |

[11]  C.-P. Li, C. A. Wolden, A. C. Dillon, R. C. Tenent, Sol. Energy Mater. Sol. Cells 2012, 99, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOgsLw%3D&md5=1639acdedb2c365f6d8ad680a77a7294CAS |

[12]  B. D. Reeves, C. R. G. Grenier, A. A. Argun, A. Cirpan, T. D. McCarley, J. R. Reynolds, Macromolecules 2004, 37, 7559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1egt7Y%3D&md5=abc4b00ed2fbfbef2efc42e33fcee5daCAS |

[13]  P. Shi, C. M. Amb, A. L. Dyer, J. R. Reynolds, ACS Appl. Mater. Interfaces 2012, 4, 6512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSqsbjE&md5=4db88f054fbaa6d1ebaacdc2ea77907bCAS | 23214435PubMed |

[14]  P. Chandrasekhar, B. J. Zay, C. Cai, Y. Chai, D. Lawrence, J. Appl. Polym. Sci. 2014, 131, 41043.

[15]  H. W. Heuer, R. Wehrmann, S. Kirchmeyer, Adv. Funct. Mater. 2002, 12, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFSksb0%3D&md5=937a9ed4bcc619c2d1c21ce558853278CAS |

[16]  H. C. Ko, S. Kim, H. Lee, B. Moon, Adv. Funct. Mater. 2005, 15, 905.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsV2hsr4%3D&md5=a1ab1a50ec9948240723660b11826c3bCAS |

[17]  K. Bange, T. Gambke, Adv. Mater. 1990, 2, 10.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVyltrc%3D&md5=bb2f3be8518c7f7e37ad10ba33edeba7CAS |

[18]  K. Murugavel, Polym. Chem. 2014, 5, 5873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFGlsrbP&md5=65106b145fdfe4c0aaef7ea4a9858ef2CAS |

[19]  G. Nie, L. Wang, C. Liu, J. Mater. Chem. C 2015, 3, 11318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFertr3F&md5=120c76fc4f6afcdcad1a9b2bfaa37655CAS |

[20]  L. Wang, L. Yuan, X. Wu, J. Wu, C. Hou, S. Feng, RSC Adv. 2014, 4, 47670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFekt7fK&md5=84b07e2d446598d01e71e6a7ff6a02e7CAS |

[21]  C. Xu, C. Ma, M. Taya, U.S. Patent 7874666B2 2011.

[22]  H. Jin, J. Tian, S. Wang, T. Tan, Y. Xiao, X. Li, RSC Adv. 2014, 4, 16839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Ggsrs%3D&md5=1d726f4f31cfe878e334f9c05d7ec541CAS |

[23]  J. Lin, X. Ni, RSC Adv. 2015, 5, 14879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOltLs%3D&md5=b964e5fccc5d9be1a1d625858a2b3492CAS |

[24]  T. Abidin, Q. Zhang, K.-L. Wang, D.-J. Liaw, Polymer 2014, 55, 5293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFSjt7zL&md5=42489b89b00f44f911ca7f865e3fb55dCAS |

[25]  H.-J. Yen, G.-S. Liou, Polym. Chem. 2012, 3, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xntlemtg%3D%3D&md5=bcb1c495350c038a688d83687d1c111cCAS |

[26]  G. Gunbas, L. Toppare, Chem. Commun. 2012, 48, 1083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOgsA%3D%3D&md5=40df4f7faacdc30906b44df9c615e506CAS |

[27]  H. Akpinar, A. Balan, D. Baran, E. K. Ünver, L. Toppare, Polymer 2010, 51, 6123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFegsbzL&md5=5a61802a84bd859d09538d53deed816aCAS |

[28]  C. M. Cho, Q. Ye, W. T. Neo, T. Lin, X. Lu, J. Xu, Polym. Chem. 2015, 6, 7570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVent73M&md5=5264d0564683c905abf8219ecce4e35aCAS |

[29]  G. Ding, C. M. Cho, C. Chen, D. Zhou, X. Wang, A. Y. X. Tan, J. Xu, X. Lu, Org. Electron. 2013, 14, 2748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SksrfL&md5=d59f349c189c2a4b98e723584fa6d5f7CAS |

[30]  A. Balan, D. Baran, L. Toppare, Polym. Chem. 2011, 2, 1029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2rtL0%3D&md5=f549627b069470bc81ed3bf5354cbb0bCAS |

[31]  G. Hizalan, A. Balan, D. Baran, L. Toppare, J. Mater. Chem. 2011, 21, 1804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWjtb4%3D&md5=b89a3f37e26fa5573d2909c24501de95CAS |

[32]  A. Balan, G. Gunbas, A. Durmus, L. Toppare, Chem. Mater. 2008, 20, 7510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGnsLjL&md5=b55811b506035f70ab52b8596fd6d577CAS |

[33]  P. M. Beaujuge, S. Ellinger, J. R. Reynolds, Adv. Mater. 2008, 20, 2772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVyntro%3D&md5=a255f072cafb935e595e699a7c54e203CAS | 25213905PubMed |

[34]  P. M. Beaujuge, S. Ellinger, J. R. Reynolds, Nat. Mater. 2008, 7, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGhs7vK&md5=f6498fafceff43317f29822d4eb4ed31CAS | 18758455PubMed |

[35]  P. Shi, C. M. Amb, E. P. Knott, E. J. Thompson, D. Y. Liu, J. Mei, A. L. Dyer, J. R. Reynolds, Adv. Mater. 2010, 22, 4949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2rsrjF&md5=d939a3d24353521d92ff16f739a4e0a2CAS | 20803543PubMed |

[36]  P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFKrug%3D%3D&md5=b99e54c11ed25d47374bd957528d8fb0CAS | 20070115PubMed |

[37]  P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Acc. Chem. Res. 2010, 43, 1396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrsLvK&md5=8138419f58a9c0a8a967f272290b00a3CAS | 20726543PubMed |

[38]  S. Z. H. Lim, W. T. Neo, C. M. Cho, X. Wang, A. Y. X. Tan, H. S. O. Chan, J. Xu, Aust. J. Chem. 2013, 66, 1048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVekt77O&md5=d7036d56b7563921d86ed8d2fce108a5CAS |

[39]  M. Karakus, A. Balan, D. Baran, L. Toppare, A. Cirpan, Synth. Met. 2012, 162, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Kgsg%3D%3D&md5=4292d11dbc21a09d5e85a414bfb9e156CAS |

[40]  M. Sendur, A. Balan, D. Baran, B. Karabay, L. Toppare, Org. Electron. 2010, 11, 1877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWqtLrP&md5=9d3a52ccfbe742253ac588bf2d4c5910CAS |

[41]  Q. Ye, W. T. Neo, C. M. Cho, S. W. Yang, T. Lin, H. Zhou, H. Yan, X. Lu, C. Chi, J. Xu, Org. Lett. 2014, 16, 6386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVSju7bE&md5=b11d51de20789b3c5120fb4a794e4181CAS | 25437510PubMed |

[42]  Q. Ye, W. T. Neo, T. Lin, J. Song, H. Yan, H. Zhou, K. W. Shah, S. J. Chua, J. Xu, Polym. Chem. 2015, 6, 1487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFegs7%2FF&md5=0acd80255a77585597ea531de3acf13aCAS |

[43]  W. T. Neo, L. M. Loo, J. Song, X. Wang, C. M. Cho, H. S. On Chan, Y. Zong, J. Xu, Polym. Chem. 2013, 4, 4663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Sks7vE&md5=879fa58ee72b47f3f6701a808a228c52CAS |

[44]  Z. Shi, W. T. Neo, T. T. Lin, H. Zhou, J. Xu, RSC Adv. 2015, 5, 96328.
         | 1:CAS:528:DC%2BC2MXhslKgur3F&md5=07f1ba54ab6f1bc724fcd104193b54c2CAS |

[45]  W. T. Neo, Z. Shi, C. M. Cho, S. J. Chua, J. Xu, ChemPlusChem 2015, 80, 1298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFWns7fI&md5=2aefc23ec482252e651d696af4682d99CAS |

[46]  J. Z. Low, W. T. Neo, Q. Ye, W. J. Ong, I. H. K. Wong, T. T. Lin, J. Xu, J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXks12gtr0%3D&md5=e920b541acadaff13b455e1dfa0a2c1dCAS |

[47]  W. T. Neo, C. M. Cho, Z. Shi, S. J. Chua, J. Xu, J. Mater. Chem. C 2016, 4, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVWmtbjP&md5=168f4c9a7e62c9449a202b43ee54d55eCAS |

[48]  P. Sonar, S. P. Singh, Y. Li, M. S. Soh, A. Dodabalapur, Adv. Mater. 2010, 22, 5409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCkt73F&md5=eb0ae2100f22977a4fec327e13f0b980CAS | 20945426PubMed |

[49]  A. J. Kronemeijer, E. Gili, M. Shahid, J. Rivnay, A. Salleo, M. Heeney, H. Sirringhaus, Adv. Mater. 2012, 24, 1558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFaisrk%3D&md5=e0507975b7e6a24b47470397a625058eCAS | 22351605PubMed |

[50]  J. Li, Y. Zhao, H. S. Tan, Y. Guo, C. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, B. S. Ong, Sci. Rep. 2012, 2, 754.
         | 23082244PubMed |

[51]  C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, S. Patil, J. Am. Chem. Soc. 2012, 134, 16532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVagtb7M&md5=448b9c2efd62f557801277eead63280aCAS | 23017114PubMed |

[52]  H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, P. S. Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. McCulloch, J. Am. Chem. Soc. 2011, 133, 3272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFWrtrY%3D&md5=d6f0574d136b44e7d464d39d44aeb479CAS | 21332134PubMed |

[53]  W. Li, K. H. Hendriks, A. Furlan, W. S. C. Roelofs, M. M. Wienk, R. A. J. Janssen, J. Am. Chem. Soc. 2013, 135, 18942.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVCmtbbO&md5=b9d9d6080d25ba11f740cb01dd9d835fCAS | 24279503PubMed |

[54]  J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2011, 133, 20130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFejtbnN&md5=d66c2a14613d3d98b57d214077a927b2CAS | 22122218PubMed |

[55]  O. Knopfmacher, M. L. Hammock, A. L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, Z. Bao, Nat. Commun. 2014, 5, 2954.
         | Crossref | GoogleScholarGoogle Scholar | 24389531PubMed |

[56]  J. Lee, A. Han, J. Kim, Y. Kim, J. H. Oh, C. Yang, J. Am. Chem. Soc. 2012, 134, 20713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslaks7%2FI&md5=f3bc638dea51b5c51d91d30c19f9267eCAS | 23173811PubMed |