A Facile and Efficient Method for the Formation of Unsymmetrical Ureas Using DABAL-Me3
Byung-Hoon Jeong A B , Hee-Kwon Kim C D E and David H. Thompson CA Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, 561-576, Republic of Korea.
B Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 570-390, Republic of Korea.
C Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States.
D Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, 561-712, Republic of Korea.
E Corresponding author. Email: hkkim717@jbnu.ac.kr
Australian Journal of Chemistry 69(7) 805-810 https://doi.org/10.1071/CH15675
Submitted: 23 October 2015 Accepted: 26 January 2016 Published: 26 February 2016
Abstract
A practical synthetic method for the formation of unsymmetrical-substituted ureas is described. The synthesis of the unsymmetrical ureas was readily performed from 2,2,2-trichloroethyl carbamate compounds by treatment of amines with bis(trimethylaluminum)-1,4-diazabicyclo[2.2.2]octane (DABAL-Me3). Using this reaction protocol, various trisubstituted and tetrasubstituted ureas were synthesized in high yields. This study offers a promising approach for the facile synthesis of a variety of unsymmetrical ureas from 2,2,2-trichloroethyl carbamates.
References
[1] D. J. Kempf, K. C. Marsh, D. A. Paul, M. F. Knigge, D. W. Norbeck, W. E. Kohlbrenner, L. Codacovi, S. Vaeavanonda, P. Bryant, X. C. Wang, Antimicrob. Agents Chemother. 1991, 35, 2209.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1Sntrw%3D&md5=a75cc374d9b603220e1b7688c8f520a4CAS | 1803993PubMed |
[2] D. P. Getman, G. A. DeCrescenzo, R. M. Heintz, K. L. Reed, J. J. Talley, M. L. Bryant, M. Clare, K. A. Houseman, J. J. Marr, J. Med. Chem. 1993, 36, 288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1egtLo%3D&md5=e0f4bd6f434c640c8c036daeb3f3bfb2CAS | 8423599PubMed |
[3] P. G. Baraldi, A. Bovero, F. Fruttarolo, R. Romagnoli, M. A. Tabrizi, D. Preti, K. Varani, P. A. Borea, A. R. Moorman, Bioorg. Med. Chem. 2003, 11, 4161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVKgt7Y%3D&md5=72f4ec4b22b0e8dab241cf7adf53091dCAS | 12951147PubMed |
[4] J. N. Burrows, J. G. Cumming, S. M. Fillery, G. A. Hamlin, J. A. Hudson, R. J. Jackson, S. McLaughlin, J. S. Shaw, Bioorg. Med. Chem. Lett. 2005, 15, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrsLrO&md5=d2659660fb060142d8c1e9925d656d43CAS | 15582404PubMed |
[5] H. Gurulingappa, M. L. Amador, M. Zhao, M. A. Rudek, M. Hidalgo, S. R. Khan, Bioorg. Med. Chem. Lett. 2004, 14, 2213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVehu70%3D&md5=3c61d290578487f59ae9b3c978c19289CAS | 15081011PubMed |
[6] A. Scozzafava, A. Mastrolorenzo, C. T. Supuran, J. Enzyme Inhib. 2001, 16, 425 .
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlKmtbo%3D&md5=3ac98f9c5eaddeebf8736e61df5d405cCAS | 11916148PubMed |
[7] A. C. Myers, J. A. Kowalski, M. A. Lipton, Bioorg. Med. Chem. Lett. 2004, 14, 5219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1OgsrY%3D&md5=9157dcd2b2b39ed966b91a000a6998e9CAS | 15380231PubMed |
[8] A. Abad, C. Agulló, A. C. Cuñat, R. Jiménez, C. Vilanova, J. Agric. Food Chem. 2004, 52, 4675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKrsLg%3D&md5=f8e88a7dea0ea2fe6506acb980ef5b5bCAS | 15264899PubMed |
[9] W. Lu, Q. Zhou, G. Liu, J. Agric. Food Chem. 2004, 52, 7759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVejtrrI&md5=216ff8977e65f42fb85c5f51d14dcc97CAS | 15612750PubMed |
[10] V. Böhmer, M. O. Vysotsky, Aust. J. Chem. 2001, 54, 671.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. W. Steed, Chem. Commun. 2011, 47, 1379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1eqtg%3D%3D&md5=7699fbe056b9ece9ae9b11915b117c9bCAS |
[12] L. Fischer, G. Guichard, Org. Biomol. Chem. 2010, 8, 3101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlCjsro%3D&md5=7b92656016e4dfdf32463089ab7635ebCAS | 20502838PubMed |
[13] C. Dou, C. Wang, H. Zhang, H. Gao, Y. Wang, Chem. – Eur. J 2010, 16, 10744.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygsbbN&md5=10c7312f01c2d8b57fe41108f6b2f443CAS | 20665573PubMed |
[14] P. Byrne, G. O. Lloyd, L. Applegarth, K. M. Anderson, N. Clarke, J. W. Steed, New J. Chem. 2010, 34, 2261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wht7nL&md5=9df199a6acfa0d6a7569f1ba26eeab32CAS |
[15] M. V. Gool, J. M. Bartolome, G. J. Macdonald, Tetrahedron Lett. 2008, 49, 7171.
| Crossref | GoogleScholarGoogle Scholar |
[16] I. Gallou, Org. Prep. Proced. Int. 2007, 39, 355.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Ois7w%3D&md5=ad78a9ee0ef3a40af2b7e35aafb4e2a6CAS |
[17] A. V. Bogolubsky, S. V. Ryabukhin, S. E. Pipko, O. Lukin, A. Shivanyuk, D. Mykytenko, A. Tolmachev, Tetrahedron 2011, 67, 3619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVGns7s%3D&md5=c4d548d8519dee8d18595d727fa5c6b4CAS |
[18] C. Spyropoulos, C. G. Kokotos, J. Org. Chem. 2014, 79, 4477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFWgtbY%3D&md5=b6e9b1b83199282c302f0924a05714d0CAS | 24750028PubMed |
[19] M. D. McReynolds, K. T. Sprott, P. R. Hanson, Org. Lett. 2002, 4, 4673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFOksL0%3D&md5=a82bc344e40b8f02115b309327db5725CAS | 12489958PubMed |
[20] H. Deng, T. D. Bannister, L. Jin, R. E. Babine, J. Quinn, P. Nagafuji, C. A. Celatka, J. Lin, T. I. Lazarova, M. J. Rynkiewicz, F. Bibbins, P. Pandey, J. Gorga, H. V. Meyers, S. S. Abdel-Meguid, J. E. Strickler, Bioorg. Med. Chem. Lett. 2006, 16, 3049.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFygtbg%3D&md5=de6852fad50a3c5174a4b3b7a5101edeCAS | 16524727PubMed |
[21] D. Ke, C. Zhan, X. Li, A. D. Q. Li, J. Yao, Tetrahedron 2009, 65, 8269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOnur3P&md5=119ae0fe587591149c6bbdbd58507a88CAS |
[22] H. S. Radeke, A. Purohit, T. D. Harris, K. Hanson, R. Jones, C. Hu, P. Yalamanchili, M. Hayes, M. Yu, M. Guaraldi, M. Kagan, M. Azure, M. Cdebaca, S. Robinson, D. Casebier, ACS Med. Chem. Lett. 2011, 2, 650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVOnt7g%3D&md5=bd20286057777887ffcbfc6ba429c1b2CAS | 24900360PubMed |
[23] S. Shibata, J. R. Gillespie, R. M. Ranade, C. Y. Koh, J. E. Kim, J. U. Laydbak, F. H. Zucker, W. G. J. Hol, C. L. M. J. Verlinde, F. S. Buckner, E. Fan, J. Med. Chem. 2012, 55, 6342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFaqsLg%3D&md5=b0eded229c999d3efc1431ebce769cebCAS | 22720744PubMed |
[24] P. Y. Chong, S. Z. Janicki, P. Petillo, J. Org. Chem. 1998, 63, 8515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFCiurg%3D&md5=b95eb23d7270dd14b27f91d79599ce93CAS |
[25] A. Novak, L. D. Humphreys, M. D. Walker, S. Woodward, Tetrahedron Lett. 2006, 47, 5767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFersrk%3D&md5=a283be18784a7048eec58d8c17e8801cCAS |
[26] N. Dubois, D. Glynn, T. McInally, B. Rhodes, S. Woodward, D. J. Irvine, C. Dodds, Tetrahedron 2013, 69, 9890.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2mt7vM&md5=2057636f2b4bba9528fe310413df7a8fCAS |
[27] D. S. Lee, Z. Amara, M. Poliakoff, T. Harman, G. Reid, B. Rhodes, S. Brough, T. McInally, S. Woodward, Org. Process Res. Dev. 2015, 19, 831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKitLzK&md5=02d8644fead4c2bd38183d7cfd44b221CAS |