Ionic Thiourea Organocatalysis of the Morita–Baylis–Hillman Reaction
Trevor McGrath A , Katherine N. Robertson A , Jason D. Masuda A , Jason A. C. Clyburne A and Robert D. Singer A BA Atlantic Centre for Green Chemistry, Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada.
B Corresponding author. Email: robert.singer@smu.ca
Australian Journal of Chemistry 69(7) 759-762 https://doi.org/10.1071/CH15596
Submitted: 23 September 2015 Accepted: 23 November 2015 Published: 28 January 2016
Abstract
An ionic thiourea based organocatalyst has been shown to promote a 1,4-diazabicyclo[2.2.2]octane, (DABCO) catalysed Morita-Baylis-Hillman reaction between benzaldehyde and cyclohex-2-en-1-one. The ionic thiourea catalyst was easily prepared from a pyrrolidinium salt containing an arylamine moiety and 3,5-di(trifluoromethyl)phenylisothiocyanate. X-ray crystallographic analysis of the ionic thiourea catalyst shows an acetone molecule doubly hydrogen bonded to the Lewis acidic thiourea N-H protons. Entrainment of the ionic thiourea co-catalyst in the ionic liquid N-butyl-N-methylpyrrolidinium bistriflimide, [BMPyr][N(Tf)2], facilitates catalyst recycling and affords very good yields with reaction times reduced through use of microwave heating.
References
[1] (a) K. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn. 1969, 42, 2732.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXjtFWktQ%3D%3D&md5=5b4d1edc0baf8737846b9fcbbe708292CAS |
(b) A. B. Baylis, M. E. D. Hillman, German Patent 2155113 1972; Chem. Abstr., 1972, 77, 34174q
(c) S. J. Connon, Chem. – Eur. J. 2006, 12, 5418.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Basavaiah, G. Veeraraghavaiah, Chem. Soc. Rev. 2012, 41, 68.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev. 2010, 110, 5447.
| Crossref | GoogleScholarGoogle Scholar |
[2] V. K. Aggarwal, D. K. Dean, A. Mereu, R. J. Williams, J. Org. Chem. 2002, 67, 510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlWjsrw%3D&md5=e2a007f57d8863c0f2df7ac504d7e625CAS | 11798324PubMed |
[3] V. K. Aggarwal, J. G. Tarver, R. McCague, Chem. Commun. 1996, 2713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFGrtA%3D%3D&md5=77debe6daec95b0ad707dc434e7d7b3eCAS |
[4] V. K. Aggarwal, I. Emme, A. Mereu, Chem. Commun. 2002, 1612.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFOhu7o%3D&md5=1dc25b95b48e6ced7b6887b532d6fbb7CAS |
[5] P. R. Schreiner, A. Wittkopp, Org. Lett. 2002, 4, 217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVWktA%3D%3D&md5=4a9a0bd564457ee1904e330a9412f93dCAS | 11796054PubMed |
[6] Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagasawa, Tetrahedron Lett. 2004, 45, 5589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1eiu7g%3D&md5=c506b7f90b77a16b401a611560cbef28CAS |
[7] D. W. C. MacMillan, Nature 2008, 455, 304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFams7zJ&md5=969e79f252005b401ef52f88ed1d2249CAS |
[8] (a) N. A. Larionova, A. S. Kucherenko, D. E. Siyutkin, S. G. Zlotin, Tetrahedron 2011, 67, 1948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFCgsrg%3D&md5=75cc944cc25663986c559608dc18db23CAS |
(b) G. Tang, X. Hu, H. J. Altenbach, Tetrahedron Lett. 2011, 52, 7034.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Ding, H. Liang, C. Zhu, Y. Cheng, Tetrahedron Lett. 2010, 51, 6105.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. Hoffmann, M. Nuchter, B. Ondruschka, P. Wasserscheid, Green Chem. 2003, 5, 296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlyru7w%3D&md5=47128ae729b4b968cd1c9d841857e631CAS |
[10] (a) M. K. Kundu, S. B. Mukherjee, N. Balu, R. Padmakumar, S. V. Bhat, Synlett 1994, 444.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFOju7s%3D&md5=fbcc4e107e719d5395987ea122c99e7cCAS |
(b) R. Octavio, M. A. de Souza, M. L. A. A. Vacsoncellos, Synth. Commun. 2003, 33, 1383.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) P. U. Naik, G. J. McManus, M. J. Zaworotko, R. D. Singer, Dalton Trans. 2008, 4834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKrtrjE&md5=3885e17a2e77ca3522e7d3ca3e5f04a9CAS | 18766212PubMed |
(b) S. Sonar, K. Ambrose, A. D. Hendsbee, J. D. Masuda, R. D. Singer, Can. J. Chem. 2012, 90, 60.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Ambrose, B. B. Hurisso, R. D. Singer, Can. J. Chem. 2013, 91, 1258.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) A. Wittkopp, P. Schreiner, Chem. – Eur. J. 2003, 9, 407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFCrsg%3D%3D&md5=d21baef71c57e44552bc1699829838b1CAS | 12532289PubMed |
(b) K. M. Lippert, K. Hof, D. Gerbig, D. Ley, H. Hausmann, S. Guenther, P. Schreiner, Eur. J. Org. Chem. 2012, 5919.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, R. D. Rogers, Chem. Commun. 2001, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFWr&md5=7288a6f9fd5ba712ec6b0a1aaa114cf2CAS |