Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Prospects of Spin Catalysis on Spin-Polarized Graphene Heterostructures

Pavel V. Avramov A E , Pavel B. Sorokin B , Alex A. Kuzubov C , Seiji Sakai D , Shiro Entani D and Hiroshi Naramoto D
+ Author Affiliations
- Author Affiliations

A Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu, 702-701, Republic of Korea.

B National University of Science and Technology MISiS, 4 Leninskiy prospekt, Moscow, 119049, Russian Federation.

C Siberian Federal University, 79 Svobodniy av., Krasnoyarsk 660041, Russian Federation.

D Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan.

E Corresponding author. Email: paul@iph.krasn.ru

Australian Journal of Chemistry 69(7) 753-758 https://doi.org/10.1071/CH15174
Submitted: 10 April 2015  Accepted: 12 November 2015   Published: 15 December 2015

Abstract

Extreme points on potential energy surfaces of Ni adatom on free-standing graphene and top:fcc and hcp:fcc graphene/Ni(111) heterostructures in different spin states were studied using periodic boundary conditions density functional theory approach. It was found that the spin states of the substrates strongly influence the energy of the Ni adatom extreme points on potential energy surface by decreasing (top:fcc heterostructure) or increasing (hcp:fcc heterostructure) the total energies of η1, η1′, and η2 Ni adatom coordinations on graphene. This phenomenon offers unique possibilities to control the potential energy surfaces of transition metal adatoms and promote surface chemical reactions using induced spin polarization of graphene substrates.


References

[1]  I. Lee, F. Delbecq, R. Morales, M. A. Albiter, F. Zaera, Nat. Mater. 2009, 8, 132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1aqsg%3D%3D&md5=4d3f9b6412b5cec9e153b3a033d506dcCAS | 19151702PubMed |

[2]  F. J. Zaera, Phys. Chem. Lett. 2010, 1, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Wguw%3D%3D&md5=28fd6231dbce9274dbde17b1acb4390aCAS |

[3]  M. Valden, X. Lai, D. W. Goodman, Science 1998, 281, 1647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVSqu7w%3D&md5=f781e7ad89bdafc80fa7b8f5c0fafcd8CAS | 9733505PubMed |

[4]  A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, T. Michely, Phys. Rev. Lett. 2006, 97, 215501.
         | Crossref | GoogleScholarGoogle Scholar | 17155746PubMed |

[5]  D. G. Castner, B. A. Sexton, G. A. Somorjai, Surf. Sci. 1978, 71, 519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsFyqsrw%3D&md5=49ef063d9849582ff641179cd15644a3CAS |

[6]  A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, N. Mårtensson, Phys. Rev. B 2008, 78, 073401.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  F. Müller, H. Sachdev, S. Hüfner, A. J. Pollard, E. W. Perkins, J. C. Russell, P. H. Beton, S. Gsell, M. Fischer, M. Schreck, Small 2009, 5, 2291.
         | Crossref | GoogleScholarGoogle Scholar | 19565616PubMed |

[8]  B. Wang, M. Caffio, C. Bromley, H. Früchtl, R. Schaub, ACS Nano 2010, 4, 5773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aqsbzN&md5=6013370467da86ab7fdf5383c33e3347CAS | 20886811PubMed |

[9]  M.-C. Wu, Q. Xu, D. W. Goodman, J. Phys. Chem. 1994, 98, 5104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivVWjt7w%3D&md5=6ee4877af49cb84be127a33f306ac0ddCAS |

[10]  S. Marchini, S. Günther, J. Wintterlin, Phys. Rev. B 2007, 76, 075429.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. L. Vázquez de Parga, F. Calleja, B. Borca, M. C. G. Passeggi, A. L. Vázquez de Parga, F. Calleja, B. Borca, M. C. G. Passeggi, Phys. Rev. Lett. 2008, 100, 056807.
         | Crossref | GoogleScholarGoogle Scholar | 18352412PubMed |

[12]  Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, H.-J. Gao, Adv. Mater. 2009, 21, 2777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2lurc%3D&md5=22e2f8d6f07ce219e5446aa24e6bb2f1CAS |

[13]  P. W. Sutter, J.-I. Flege, E. A. Sutter, Nat. Mater. 2008, 7, 406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVGktbg%3D&md5=51a935d30d4c30a8a0f4cc68240971ccCAS | 18391956PubMed |

[14]  J. Wintterlin, M.-L. Bocquet, Surf. Sci. 2009, 603, 1841.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOltr0%3D&md5=ec2db84e8e35e9942abc2163823e3ca1CAS |

[15]  M. L. Bocquet, B. Wang, Prog. Surf. Sci. 2010, 85, 435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGmt7bL&md5=2366868846a1f4a80b248f24a3615bccCAS |

[16]  M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, J. Osterwalder, Science 2004, 303, 217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlGiug%3D%3D&md5=ebc587e3c1f9cd275b9d952e0d6df519CAS | 14716010PubMed |

[17]  A. Goriachko, Y. He, M. Knapp, H. Over, M. Corso, T. Brugger, S. Berner, J. Osterwalder, T. Greber, Langmuir 2007, 23, 2928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynsL8%3D&md5=421f087b83bb496248c024c658acc17aCAS | 17286422PubMed |

[18]  A. Goriachko, Y. B. He, H. J. Over, PhysChemComm 2008, 112, 8147.
         | 1:CAS:528:DC%2BD1cXlvFSgtLs%3D&md5=4e1f6136481f6ae43863a8b33f057814CAS |

[19]  H. Dil, J. Lobo-Checa, R. Laskowski, P. Blaha, S. Berner, J. Osterwalder, T. Greber, Science 2008, 319, 1824.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs12ksbY%3D&md5=08886beabf1f7082ea89d31b9a14fcfeCAS | 18369146PubMed |

[20]  S. Berner, M. Corso, R. Widmer, O. Groening, R. Laskowski, P. Blaha, K. Schwarz, A. Goriachko, H. Over, S. Gsell, Angew. Chem., Int. Ed. 2007, 46, 5115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns12qsL4%3D&md5=cac02293381631129f8a7a73091b3d20CAS |

[21]  B. Wang, M.-L. J. Bocquet, Phys. Chem. Lett. 2011, 2, 2341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmt7nK&md5=43f346085192735c75d61091e1e8a5fcCAS |

[22]  E. Bekyarova, S. Sarkar, F. Wang, M. F. Itkis, I. Kalinina, X. Tian, R. C. Haddon, Acc. Chem. Res. 2013, 46, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2ktLrK&md5=ec7fe10922ec1f2b2e0b4340719c5531CAS | 23116475PubMed |

[23]  S. M. Avdoshenko, I. N. Ioffe, G. Cuniberti, L. Dunsch, A. A. Popov, ACS Nano 2011, 5, 9939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyhtL3J&md5=47e990415d932d654bb3daff2515e0b6CAS | 22040265PubMed |

[24]  M. Zhou, Y.-H. Lu, Y.-Q. Cai, C. Zhang, Y.-P. Feng, Nanotechnology 2011, 22, 385502.
         | Crossref | GoogleScholarGoogle Scholar | 21869463PubMed |

[25]  M. Zhou, A. Zhang, Z. Dai, C. Zhang, Y.-P. Feng, J. Chem. Phys. 2010, 132, 194704.
         | Crossref | GoogleScholarGoogle Scholar | 20499981PubMed |

[26]  M. Zhou, A. Zhang, Z. Dai, Y.-P. Feng, C. Zhang, J. Phys. Chem. C 2010, 114, 16541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSlsr3M&md5=6d90dc939ee04138772d0d09cab9847eCAS |

[27]  X. Zhang, L. Yu, X. Wu, W. Hu, Adv. Sci. 2015, 2, 1500101.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  P. V. Avramov, A. A. Kuzubov, S. Sakai, M. Ohtomo, S. Entani, Y. Matsumoto, H. Naramoto, N. S. Eleseeva, J. Appl. Phys. 2012, 112, 114303.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  A. L. Buchachenko, V. L. Berdinsky, Chem. Rev. 2002, 102, 603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1Wmug%3D%3D&md5=ec68bcb53b85b0ffdfa42547a9acf2dfCAS | 11890751PubMed |

[30]  S. J. Chae, F. Günes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat, Y. H. Lee, Adv. Mater. 2009, 21, 2328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt12ntLw%3D&md5=ad2e44fdb25c855ccdeb693e72265af8CAS |

[31]  R. Rosei, M. Decrescenzi, F. Sette, C. Quaresima, A. Savoia, P. Perfetti, Phys. Rev. B 1983, 28, 1161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXks1aitro%3D&md5=d4b87de9f3197a4ca288a4be52e39e9eCAS |

[32]  Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, C. Oshima, Surf. Sci. 1997, 374, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitlWiurY%3D&md5=e2310a22bc10e94bf80ab536484a583bCAS |

[33]  E. N. Voloshina, A. Generalov, M. Weser, S. Böttcher, K. Horn, Yu. S. Dedkov, New J. Phys. 2011, 13, 113028.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  G. Bertoni, L. Calmels, A. Altibelli, V. Serin, Phys. Rev. B 2005, 71, 075402.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  G. Kalibaeva, R. Vuilleumier, S. Meloni, A. Alavi, G. Ciccotti, R. Rosei, J. Phys. Chem. B 2006, 110, 3638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFSksQ%3D%3D&md5=b16c0b6be1cbfa815e0a2178a4c82290CAS | 16494419PubMed |

[36]  L. Adamska, Y. Lin, A. J. Ross, M. Batzill, I. I. Oleynik, Phys. Rev. B 2012, 85, 195443.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  S. M. Kozlov, F. Viñes, A. Görling, J. Phys. Chem. C 2012, 116, 7360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Squro%3D&md5=6c2844a72954fbef115c18de532b0fa3CAS |

[38]  Yu. S. Dedkov, M. Fonin, New J. Phys. 2010, 12, 125004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1eitLfJ&md5=a2efbac3fe442e54ede166a388c82b20CAS |

[39]  Yu. S. Dedkov, M. Fonin, New J. Phys. 2010, 12, 125004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1eitLfJ&md5=a2efbac3fe442e54ede166a388c82b20CAS |

[40]  S. M. Kozlov, F. Viñes, A. Görling, J. Phys. Chem. C 2012, 116, 7360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Squro%3D&md5=6c2844a72954fbef115c18de532b0fa3CAS |

[41]  W. Zhao, S. M. Kozlov, O. Höfert, K. Gotterbarm, M. P. A. Lorenz, F. Viñes, C. Papp, A. Görling, H.-P. Steinrück, J. Phys. Chem. Lett. 2011, 2, 759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKit70%3D&md5=13b98ffef9720f8816a4983d13b54397CAS |

[42]  P. V. Avramov, S. Sakai, S. Entani, Y. Matsumoto, H. Naramoto, Chem. Phys. Lett. 2011, 508, 86.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslWhtL8%3D&md5=0874c83af039157f996852fb44edcf7dCAS |

[43]  N. Ooi, A. Rairkar, J. B. Adams, Carbon 2006, 44, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOmtr3O&md5=7b6b701298a7dacaf468860889c82354CAS |

[44]  N. Troullier, J. L. Martins, Phys. Rev. B 1992, 46, 1754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltFyktb0%3D&md5=d308036c0f2389afd60ac78f00e71fb2CAS |

[45]  J. H. Weaver, J. Luis Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H. Kroll, N. Troullier, R. E. Haufler, R. E. Smalley, Phys. Rev. Lett. 1991, 66, 1741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFOhtbg%3D&md5=812089e4eaced2d1efc80a5057d6f59cCAS | 10043295PubMed |

[46]  M. B. Jost, N. Troullier, D. M. Poirier, J. L. Martins, J. H. Weaver, L. P. F. Chibante, R. E. Smalley, Phys. Rev. B 1991, 44, 1966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlt1ejs74%3D&md5=603d7e8f89492da4213a1385868e1390CAS |

[47]  A. A. Kuzubov, E. A. Kovaleva, P. V. Avramov, A. V. Kuklin, N. S. Mikhaleva, F. N. Tomilin, S. Sakai, S. Entani, Y. Matsumoto, H. Naramoto, J. Appl. Phys. 2014, 116, 084309.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  P. V. Avramov, A. A. Kuzubov, S. Sakai, M. Ohtomo, S. Entani, Y. Matsumoto, H. Naramoto, N. S. Eleseeva, J. Appl. Phys. 2012, 112, 114303.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=e2557f66801ae4bc524755e675b3410eCAS | 10062328PubMed |

[52]  G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1Gnsr0%3D&md5=3c312b779e2a9e195a233c52e250c39bCAS |

[53]  G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvFKrtL4%3D&md5=9723820c618d23812b87a6fba6dd7ca7CAS |

[54]  G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xms1Whu7Y%3D&md5=78d66642658fbd059017c60d583fa42aCAS |

[55]  H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  D. Hobbs, G. Kresse, J. Hafner, Phys. Rev. B 2000, 62, 11556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVSmur4%3D&md5=94ae81cadc3607ceacb69ad92b5f692eCAS |

[57]  J. Lahiri, T. Miller, L. Adamska, I. I. Oleynik, M. Batzill, Nano Lett. 2011, 11, 518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrsLbF&md5=a97d124b58221510f35fe0187d12ad14CAS | 21182255PubMed |

[58]  J. Lahiri, T. S. Miller, A. J. Ross, L. Adamska, I. I. Oleynik, M. Batzill, New J. Phys. 2011, 13, 025001.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink, P. J. Kelly, Phys. Rev. B 2009, 79, 195425.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  P. J. Feibelman, Phys. Rev. B 2008, 77, 165419.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  G. Bertoni, L. Calmels, A. Altibelli, V. Serin, Phys. Rev. B 2005, 71, 075402.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=e2557f66801ae4bc524755e675b3410eCAS | 10062328PubMed |

[63]  A. Taylor, J. Inst. Met. 1950, 77, 585.
         | 1:CAS:528:DyaG3MXisFKh&md5=15141bd4f17071484374d70824bc5218CAS |

[64]  R. Rosei, M. Decrescenzi, F. Sette, C. Quaresima, A. Savoia, P. Perfetti, Phys. Rev. B 1983, 28, 1161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXks1aitro%3D&md5=d4b87de9f3197a4ca288a4be52e39e9eCAS |

[65]  Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, C. Oshima, Surf. Sci. 1997, 374, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitlWiurY%3D&md5=e2310a22bc10e94bf80ab536484a583bCAS |

[66]  G. Bertoni, L. Calmels, A. Altibelli, V. Serin, Phys. Rev. B 2005, 71, 075402.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  G. Kalibaeva, R. Vuilleumier, S. Meloni, A. Alavi, G. Ciccotti, R. Rosei, J. Phys. Chem. B 2006, 110, 3638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFSksQ%3D%3D&md5=b16c0b6be1cbfa815e0a2178a4c82290CAS | 16494419PubMed |

[68]  L. Adamska, Y. Lin, A. J. Ross, M. Batzill, I. I. Oleynik, Phys. Rev. B 2012, 85, 195443.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  L. Yu. Antipina, P. V. Avramov, S. Sakai, H. Naramoto, M. Ohtomo, S. Entani, Y. Matsumoto, P. B. Sorokin, Phys. Rev. B 2012, 86, 085435.
         | Crossref | GoogleScholarGoogle Scholar |