Rapid Microwave-Assisted Synthesis of N-Aryl 1,2,3,4-Tetrahydroisoquinolines
José Augusto Forni A , Martin Brzozowski A , John Tsanaktsidis A , G. Paul. Savage A and Anastasios Polyzos A B C
+ Author Affiliations
- Author Affiliations
A CSIRO Manufacturing Flagship, Private Bag 10, Clayton South, Vic. 3169, Australia.
B School of Chemistry, The University of Melbourne, Parkville, Vic. 3010, Australia.
C Corresponding author. Email: tash.polyzos@csiro.au
Australian Journal of Chemistry 68(12) 1890-1893 https://doi.org/10.1071/CH15490
Submitted: 11 August 2015 Accepted: 7 October 2015 Published: 28 October 2015
Abstract
N-aryl 1,2,3,4-tetrahydroisoquinolines were prepared rapidly in good yields by the microwave-assisted Pd-catalysed coupling of (hetero)aryl iodides or bromides with 1,2,3,4-tetrahydroisoquinoline. Reactions were typically complete within 5 min for aryl iodides and within 30 min for pyridyl bromides.
References
[1] M. E. Welsch, S. A. Snyder, B. R. Stockwell, Curr. Opin. Chem. Biol. 2010, 14, 347.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWqsLs%3D&md5=c8768d829c60a5cace8c2fdaf00bd0fcCAS | 20303320PubMed |
[2] V. H. Le, M. Inai, R. M. Williams, T. Kan, Nat. Prod. Rep. 2015, 32, 328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Ohtb%2FI&md5=19404f925fc54e9b0110af12f55c19caCAS | 25273374PubMed |
[3] N. Cabedo, I. Andreu, M. C. R. de Arellano, A. Changraoui, A. Serrano, A. Bermejo, P. Protais, D. Cortes, J. Med. Chem. 2001, 44, 1794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFynu7c%3D&md5=96997508204f8acc5cfefabbbda01473CAS | 11356113PubMed |
[4] A. W. Kahsai, J. Cui, H. U. Kaniskan, P. P. Garner, G. Fenteany, J. Biol. Chem. 2008, 283, 24534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGktb3J&md5=31e53c0ddf1452fd76a996f8f4d66a0eCAS | 18556657PubMed |
[5] J. D. Scott, R. M. Williams, Chem. Rev. 2002, 102, 1669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVOlsrc%3D&md5=43ecc25a6a9dd72481fe86d52166e2a9CAS | 11996547PubMed |
[6] F. Rusch, L.-N. Unkel, D. Alpers, F. Hoffmann, M. Brasholz, Chem. – Eur. J. 2015, 21, 8336.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnt1Wjurs%3D&md5=c49c0d83205aabae1cd54a456403e6d1CAS | 25917406PubMed |
[7] J. Dhineshkumar, M. Lamani, K. Alagiri, K. R. Prabhu, Org. Lett. 2013, 15, 1092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislOgtrg%3D&md5=e2c4334f7c2a529f3bb94655159435eaCAS | 23419035PubMed |
[8] W. Liu, S. Liu, R. Jin, H. Guo, J. Zhang, Org. Chem. Front. 2015, 2, 288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehurrJ&md5=743a6e855c158535a30bffd957e6bce2CAS |
[9] D. Seidel, Acc. Chem. Res. 2015, 48, 317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXks1Kntg%3D%3D&md5=ccec7d54cc32773a6f499231ae20db9eCAS | 25560649PubMed |
[10] J.-J. Li, T.-S. Mei, J.-Q. Yu, Angew. Chem. Int. Ed. 2008, 47, 6452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCksLjE&md5=6a9997bc39c6f261c31df3e56584aba5CAS |
[11] M. Brzozowski, J. A. Forni, G. P. Savage, A. Polyzos, Chem. Commun. 2015, 334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFeisbrO&md5=79420e2770bdef9951122ab005d792a1CAS |
[12] C.-J. Li, Acc. Chem. Res. 2009, 42, 335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSit7vI&md5=88fea851a194f1829314f796325ec300CAS | 19220064PubMed |
[13] K. R. Campos, Chem. Soc. Rev. 2007, 36, 1069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFantLo%3D&md5=06e955e9d05217bacd79f48700096241CAS | 17576475PubMed |
[14] E. A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel, B. U. W. Maes, Chem. – Eur. J. 2012, 18, 10092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVymtrzK&md5=c5daf4cb3c34f0864b5f6ac4ae4b6b25CAS | 22829434PubMed |
[15] J. W. Beatty, C. R. J. Stephenson, Acc. Chem. Res. 2015, 48, 1474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvFCks78%3D&md5=98a8c3e6f15536588ddd60b99ca6ac71CAS | 25951291PubMed |
[16] T. A. Jensen, X. Liang, D. Tanner, N. Skjaerbaek, J. Org. Chem. 2004, 69, 4936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1SnsLc%3D&md5=f50c0af4ce2a1f726a58bc3331107bb4CAS | 15255719PubMed |
[17] K. T. J. Loones, B. U. W. Maes, G. Rombouts, S. Hostyn, G. Diels, Tetrahedron 2005, 61, 10338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVantbbN&md5=1ef2d900745dcb16c574e43a4df5f2ccCAS |
[18] Y. Wang, M. Alterman, A. Hallberg, Synthesis 2002, 1597.
[19] J. A. Smith, R. K. Jones, G. W. Booker, S. M. Pyke, J. Org. Chem. 2008, 73, 8880.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqtb7K&md5=3d8bfe403d24d28e742a04d2d10862beCAS | 18950225PubMed |
[20] T. Wang, D. R. Magnin, L. G. Hamann, Org. Lett. 2003, 5, 897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVynsLs%3D&md5=28c9f8707ca05d99279ade4a7d449feaCAS | 12633100PubMed |
[21] B. U. W. Maes, K. T. J. Loones, G. L. F. Lemiere, R. A. Dommisse, Synlett 2003, 1822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1WlsL0%3D&md5=a62d2d91148ecf97d8aad9b7b0824b22CAS |
[22] J. P. Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc. Chem. Res. 1998, 31, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms12itLk%3D&md5=6f58d047658274561356a1d4de80c646CAS |
[23] J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, S. L. Buchwald, J. Org. Chem. 2000, 65, 1158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1KgtA%3D%3D&md5=577f5c233170f8e0223d2a361671ea8fCAS | 10814067PubMed |
[24] T. E. Barder, M. R. Biscoe, S. L. Buchwald, Organometallics 2007, 26, 2183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVaitb4%3D&md5=8a4c13e828111699dbf5191e99d93eafCAS |
[25] E. R. Strieter, D. G. Blackmond, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 13978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVCktrc%3D&md5=1512719d40f3b461d96a51ee232102baCAS | 14611232PubMed |
[26] L. Shao, Y. Du, M. Zeng, X. Li, W. Shen, S. Zuo, Y. Lu, X.-M. Zhang, C. Qi, Appl. Organomet. Chem. 2010, 24, 421.
| 1:CAS:528:DC%2BC3cXks1GlsLs%3D&md5=95f6cff57731bda6cd1b591f3a48065aCAS |
[27] L. Wang, Y. Zhang, L. Liu, Y. Wang, J. Org. Chem. 2006, 71, 1284.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGmsA%3D%3D&md5=101f5f27ed3e76b916c71d86b3dd8265CAS | 16438557PubMed |
[28] M. Kuroboshi, Y. Waki, H. Tanaka, J. Org. Chem. 2003, 68, 3938.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVClt7s%3D&md5=8c77368c9e0f5b81514958a90f340c70CAS | 12737575PubMed |
[29] V. Penalva, J. Hassan, L. Lavenot, C. Gozzi, M. Lemaire, Tetrahedron Lett. 1998, 39, 2559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFOmurk%3D&md5=068fbafc57bef892ce94d0b4387a502eCAS |
[30] C. Qi, X. Sun, C. Lu, J. Yang, Y. Du, H. Wu, X.-M. Zhang, J. Organomet. Chem. 2009, 694, 2912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVGrur0%3D&md5=f2cf3306774cf5dbf466a4b99948d0f0CAS |
[31] R. K. Arvela, N. E. Leadbeater, M. S. Sangi, V. A. Williams, P. Granados, R. D. Singer, J. Org. Chem. 2005, 70, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrs77N&md5=4c83bfed6f1d3cc13e334acfc399fee3CAS | 15624918PubMed |
[32] H. Wang, H. Cheng, F. Zhao, Green Sustainable Chem. 2014, 4, 1.
| Crossref | GoogleScholarGoogle Scholar |
[33] A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W. Henderickx, J. G. de Vries, Org. Lett. 2003, 5, 3285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtlOktr4%3D&md5=2ea87592fe7ca01cb22a61d2b57e2756CAS |
[34] S. Zhou, E. Doni, G. M. Anderson, R. G. Kane, S. W. MacDougall, V. M. Ironmonger, T. Tuttle, J. A. Murphy, J. Am. Chem. Soc. 2014, 136, 17818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVegtb%2FO&md5=c45681736e20e44b1bdb714b0980f95dCAS | 25474411PubMed |
[35] I. R. Baxendale, M. R. Pitts, Chim. Oggi 2006, 24, 41.
| 1:CAS:528:DC%2BD28XhtF2qsbbN&md5=d1c3d832bc58937a2f644305de365d0aCAS |
[36] T. N. Glasnov, C. O. Kappe, Macromol. Rapid Commun. 2007, 28, 395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFCmtLo%3D&md5=6984af9152b28e8795724e6b852b6047CAS |
[37] I. R. Baxendale, J. Hayward, S. V. Ley, Comb. Chem. High Throughput Screen. 2007, 10, 802.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2rtLg%3D&md5=1da0e8d055394da1f7a718c8b5471278CAS | 18288946PubMed |
[38] I. R. Baxendale, C. Hornung, S. V. Ley, J. de M. M. Molina, A. Wikström, Aust. J. Chem. 2013, 66, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOit7c%3D&md5=3e171480da1e92b35e29521ae9324547CAS |
[39] C. O. Kappe, in Flow Chemistry (Eds F. Darvas, V. Hessel, G. Dorman) 2014, Vol. 1, Ch. 8, pp. 251–258 (De Gruyter: Berlin).