Studies Toward the Total Synthesis and Stereochemical Assignment of Microspinosamide
Gajan Santhakumar A and Richard J. Payne A BA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B Corresponding author. Email: richard.payne@sydney.edu.au
Australian Journal of Chemistry 68(12) 1885-1889 https://doi.org/10.1071/CH15468
Submitted: 2 August 2015 Accepted: 8 September 2015 Published: 21 October 2015
Abstract
Efforts toward the total synthesis and stereochemical assignment of the cyclic depsipeptide natural product microspinosamide are described. A single diastereoisomer was targeted corresponding to the predicted structure of the natural product incorporating a (2S, 3R)-β-hydroxy-p-bromophenylalanine residue. Assembly was achieved through the initial synthesis of a cyclic depsipeptide and a linear peptide thioester fragment by solid-phase peptide synthesis, followed by fusion of the two fragments through a native chemical ligation–oxidation protocol. Extensive spectroscopic analysis showed structural differences to the isolated natural product, suggesting that a diastereoisomer of microspinosamide had been synthesised. This work lays the foundation for the future synthesis of the correct diastereoisomer.
References
[1] M. A. Rashid, K. R. Gustafson, L. K. Cartner, N. Shigematsu, L. K. Pannell, M. R. Boyd, J. Nat. Prod. 2001, 64, 117.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1Ckur0%3D&md5=55ac213999326248421e3a0dfc901a05CAS | 11170684PubMed |
[2] (a) M. J. Stone, R. J. Payne, Acc. Chem. Res. 2015, 48, 2251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Srsb%2FO&md5=fd1424201b86783b6bd90689c93b7af3CAS | 26196117PubMed |
(b) Y. S. Hsieh, B. L. Wilkinson, L. C. Wijeyewickrema, R. N. Pike, R. J. Payne, Angew. Chem. Int. Ed. 2014, 53, 3947.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. J. Millard, J. P. Ludeman, M. Canals, J. L. Bridgford, M. G. Hinds, D. J. Clayton, A. Christopoulos, R. J. Payne, M. J. Stone, Structure 2014, 22, 1571.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. H. Y. Tan, J. P. Ludeman, J. Wedderburn, M. Canals, P. Hall, S. J. Butler, D. Taleski, A. Christopoulos, M. J. Hickey, R. J. Payne, M. J. Stone, J. Biol. Chem. 2013, 288, 10024.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. S. Hsieh, D. Taleski, B. L. Wilkinson, L. C. Wijeyewickrema, T. E. Adams, R. N. Pike, R. J. Payne, Chem. Commun. 2012, 48, 1547.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Taleski, S. J. Butler, M. J. Stone, R. J. Payne, Chem. Asian J. 2011, 6, 1316.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. Z. Zhu, C. J. Millard, J. P. Ludeman, L. S. Simpson, D. J. Clayton, R. J. Payne, T. S. Widlanski, M. J. Stone, Biochemistry 2011, 50, 1524.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) X. Liu, L. R. Malins, M. Roche, J. Sterjovski, R. Duncan, M. L. Garcia, N. C. Barnes, D. A. Anderson, M. J. Stone, P. R. Gorry, R. J. Payne, ACS Chem. Biol. 2014, 9, 2074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVentbjI&md5=738e9d66892dd98636d0f06a9ef1af3aCAS | 24963694PubMed |
(b) M. Roche, H. Salimi, R. Duncan, B. L. Wilkinson, K. Chikere, M. S. Moore, N. Webb, N. Zappi, J. Sterjovski, J. Flynn, A. Ellett, L. R. Gray, B. Lee, B. Jubb, M. Westby, P. A. Ramsland, S. R. Lewin, R. J. Payne, M. J. Churchill, P. R. Gorry, Retrovirology 2013, 10, 43.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Feng, A. R. Carroll, D. M. Pass, J. K. Archbold, V. M. Avery, R. J. Quinn, J. Nat. Prod. 2008, 71, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFKntA%3D%3D&md5=b7ecdc46d47f006f2b5714be64797af8CAS | 18163586PubMed |
[5] (a) G. Alkhatib, C. Combadiere, C. C. Broder, Y. Feng, P. E. Kennedy, P. M. Murphy, E. A. Berger, Science 1996, 272, 1955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvVOisLg%3D&md5=21ac0c5f2fa9720b0af4bbd1fae31907CAS | 8658171PubMed |
(b) H. K. Deng, R. Liu, W. Ellmeier, S. Choe, D. Unutmaz, M. Burkhart, P. DiMarzio, S. Marmon, R. E. Sutton, C. M. Hill, C. B. Davis, S. C. Peiper, T. J. Schall, D. R. Littman, N. R. Landau, Nature 1996, 381, 661.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Choe, M. Farzan, Y. Sun, N. Sullivan, B. Rollins, P. D. Ponath, L. Wu, C. R. Mackay, G. LaRosa, W. Newman, N. Gerard, C. Gerard, J. Sodroski, Cell 1996, 85, 1135.
| Crossref | GoogleScholarGoogle Scholar |
[6] G. Santhakumar, R. J. Payne, Org. Lett. 2014, 16, 4500.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaisb7K&md5=7a96e64225336f92793b5098bcd04badCAS | 25105901PubMed |
[7] (a) D. J. Newman, G. M. Cragg, J. Nat. Prod. 2004, 67, 1216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslWhtbo%3D&md5=34fa0c0d5a049ada32f77fd5cc8b393fCAS | 15332835PubMed |
(b) D. J. Newman, G. M. Cragg, J. Nat. Prod. 2007, 70, 461.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. K. Gulavita, S. P. Gunasekera, S. A. Pomponi, E. V. Robinson, J. Org. Chem. 1992, 57, 1767.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Ryu, S. Matsunaga, N. Fusetani, Tetrahedron 1994, 50, 13409.
| Crossref | GoogleScholarGoogle Scholar |
(e) H.-y. Li, S. Matsunaga, N. Fusetani, J. Med. Chem. 1995, 38, 338.
| Crossref | GoogleScholarGoogle Scholar |
(f) H.-y. Li, S. Matsunaga, N. Fusetani, J. Nat. Prod. 1996, 59, 163.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. Matsunaga, N. Fusetani, S. Konosu, Tetrahedron Lett. 1984, 25, 5165.
| Crossref | GoogleScholarGoogle Scholar |
(h) S. Matsunaga, N. Fusetani, S. Konosu, Tetrahedron Lett. 1985, 26, 855.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) Y. Hamada, T. Shioiri, Chem. Rev. 2005, 105, 4441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVylsr7M&md5=926d28fb0ad476051250dc30d4ef93aaCAS | 16351050PubMed |
(b) C. T. Walsh, R. V. O’Brien, C. Khosla, Angew. Chem. Int. Ed. 2013, 52, 7098.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. Dawson, T. Muir, I. Clark-Lewis, S. Kent, Science 1994, 266, 776.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVGgtrw%3D&md5=4bbff7b4624493187902a4dddb36aad1CAS | 7973629PubMed |
[10] C. J. Easton, C. A. Hutton, P. D. Roselt, E. R. T. Tiekink, Tetrahedron 1994, 50, 7327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVSltA%3D%3D&md5=56ef70c8fe2c9f781899958495cf899eCAS |
[11] D. Crich, A. Banerjee, J. Org. Chem. 2006, 71, 7106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVCltbo%3D&md5=515c907e7f6da60887b39cf5e27ac1d6CAS | 16930077PubMed |
[12] J. Pigza, T. Molinski, Org. Lett. 2010, 12, 1256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitV2hsLk%3D&md5=e156800a5287d88644983d647d34621aCAS | 20163126PubMed |
[13] Y. Kajihara, A. Yoshihara, K. Hirano, N. Yamamoto, Carbohydr. Res. 2006, 341, 1333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVyqt7o%3D&md5=8ee3b7b93f2259347a12f85c2cbe31c1CAS | 16701588PubMed |
[14] R. J. Payne, S. Ficht, W. A. Greenberg, C.-H. Wong, Angew. Chem. Int. Ed. 2008, 47, 4411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFOnt7w%3D&md5=ff155c201910ee7100cc8a1a42124748CAS |