Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Charge Carrier Transfer in Ta3N5 Photoanodes Prepared by Different Methods for Solar Water Splitting

Mingxue Li A B D , Wenjun Luo B C , Liheng Yang B , Xin Zhao B and Zhigang Zou B D
+ Author Affiliations
- Author Affiliations

A Department of Physics, China University of Mining and Technology, Xuzhou 221116, China.

B Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.

C Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.

D Corresponding authors. Email: lmx_cumt@126.com, zgzou@nju.edu.cn

Australian Journal of Chemistry 69(6) 631-637 https://doi.org/10.1071/CH15466
Submitted: 1 August 2015  Accepted: 10 October 2015   Published: 20 November 2015

Abstract

The preparation method of a photoanode can affect its water splitting property. Here, as examples, we prepared Ta3N5 photoanodes by an electrophoresis deposition (EPD) method and an oxidation and nitridation of Ta foil (ONTF) method. The light harvest, interfacial charge transfer, and charge separation of the two Ta3N5 photoanodes were analysed to gain insight into the role of the preparation method on the water splitting property. The results suggested that the ONTF-prepared Ta3N5 showed a higher solar energy conversion efficiency, arising from its better interfacial charge transfer efficiency and higher charge separation efficiency. The higher charge separation efficiency was mainly attributed to good electron transfer, and the inter-particle connectivity was key for the electron transfer in the photoanodes. Especially, the dense, small particle structure of ONTF-prepared Ta3N5 was beneficial for increasing the connectivity between inter-particles. This comparison of preparation methods can be used as a reference for future photoanode preparation to improve the water splitting property of photoelectrochemical cells.


References

[1]  A. Fujishima, K. Honda, Nature 1972, 238, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVykurw%3D&md5=1d4aacd001d223a01e60423d54a2fe36CAS | 12635268PubMed |

[2]  O. Khaselev, J. A. Turner, Science 1998, 280, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVeltro%3D&md5=5ea57a5f926cd172f0d806762f09dbe2CAS | 9545218PubMed |

[3]  N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFymtbrJ&md5=f3b49793b24c7ec5845f0c1b5cee5f8cCAS | 17043226PubMed |

[4]  G. W. Crabtree, M. S. Dresselhaus, M. V. Buchanan, Phys. Today 2004, 57, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSgs7vF&md5=4d0e730b4fe61569a14c3069fece6f36CAS |

[5]  M. Grätzel, Nature 2001, 414, 338.
         | Crossref | GoogleScholarGoogle Scholar | 11713540PubMed |

[6]  T. Faunce, Aust. J. Chem. 2012, 65, 557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFCns70%3D&md5=76ce93cd0cffc4997832b2029b72d666CAS |

[7]  L. Pranevicius, L. L. Pranevicius, P. Vilkinis, S. Baltaragis, K. Gedvilas, Appl. Surf. Sci. 2014, 295, 240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslSmsLs%3D&md5=85ca7b4efc215a112837f83bf7926f66CAS |

[8]  B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska, J. Augustynski, J. Mater. Chem. 2008, 18, 2298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVOnsLg%3D&md5=78cfe112fc2bfdd4a8606351903331d4CAS |

[9]  N. Gaillard, B. Cole, J. Kaneshiro, E. L. Miller, B. Marsen, L. Weinhardt, M. Bär, C. Heske, K.-S. Ahn, Y. Yan, M. M. Al-Jassim, J. Mater. Res. 2010, 25, 45.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKmsLk%3D&md5=254301f5445abe31786861b76a8786bdCAS |

[10]  W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou, Energy Environ. Sci. 2011, 4, 4046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKitbnL&md5=aa999606ed3fc7370116da3b032395edCAS |

[11]  Y. Park, K. J. McDonald, K. S. Choi, Chem. Soc. Rev. 2013, 42, 2321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFKqsrY%3D&md5=cc955a64da873f52d6267b8ede0f8867CAS | 23092995PubMed |

[12]  Z. S. Li, W. J. Luo, M. L. Zhang, J. Y. Feng, Z. G. Zou, Energy Environ. Sci. 2013, 6, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsValtbg%3D&md5=b17eb5dd892790c0981f8aedc09fc73bCAS |

[13]  S. D. Tilley, M. Cornuz, K. Sivula, M. Grätzel, Angew. Chem. Int. Ed. 2010, 49, 6405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqtLbK&md5=37ebfdb476fd1c394ebc3810b6d7a0f1CAS |

[14]  B. Iandolo, M. Zäch, Aust. J. Chem. 2012, 65, 633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFCnsb4%3D&md5=5b0b474525ff943acbb70adbae8f4f76CAS |

[15]  C. Zhen, L. Z. Wang, G. Liu, G. Q. Lu, H. M. Cheng, Chem. Commun. 2013, 49, 3019.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFWgsLg%3D&md5=69c09f82774ca70915586a805824138aCAS |

[16]  M. Higashi, K. Domen, R. Abe, Energy Environ. Sci. 2011, 4, 4138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKitbbF&md5=aaec8216ca43ddbae686d2afce496cdeCAS |

[17]  M. Liao, J. Feng, W. Luo, Z. Wang, J. Zhang, Z. Li, T. Yu, Z. Zou, Adv. Funct. Mater. 2012, 22, 3066.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1elsLg%3D&md5=8ad5dc9c7440cf30236c320a2cf5482aCAS |

[18]  B. A. Pinaud, P. C. K. Vesborg, T. F. Jaramillo, J. Phys. Chem. C 2012, 116, 15918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKqu73M&md5=bbe3e064b802893b861653b1d9ea3d7bCAS |

[19]  Y. Cong, H. S. Park, H. X. Dang, F. F. Fan, A. J. Bard, C. B. Mullins, Chem. Mater. 2012, 24, 579.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVKisQ%3D%3D&md5=5113281cdb5554b90798e4c532424ae3CAS |

[20]  Y. Cong, H. S. Park, S. Wang, H. X. Dang, F.-R. F. Fan, C. B. Mullins, A. J. Bard, J. Phys. Chem. C 2012, 116, 14541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvF2nsbs%3D&md5=b103f8d6f6776ad91062570ef278ffa1CAS |

[21]  Y. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, K. Domen, Adv. Mater. 2013, 25, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKisL7F&md5=0af962542d26c7a1b7d2ad4feb95f819CAS | 22987610PubMed |

[22]  X. Zhang, Y. Liu, S.-T. Lee, S. Yang, Z. Kang, Energy Environ. Sci. 2014, 7, 1409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFWms7c%3D&md5=010f247a1bb509fe85671724a778cc66CAS |

[23]  X. Zhao, W. Luo, J. Feng, M. Li, Z. Li, T. Yu, Z. Zou, Adv. Energy Mater. 2014, 130, 1785.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, J. Mater. Res. 2010, 25, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han, C. Li, Angew. Chem. Int. Ed. 2014, 53, 7295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVKlurg%3D&md5=2004cf74a22a9b9dd6bf5b538357666eCAS |

[26]  W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsmoto, K. Domen, J. Phys. Chem. B 2003, 107, 1798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvV2lug%3D%3D&md5=a7e5969d3239b0c5cc5faeb1cd00c442CAS |

[27]  Y. Kado, C.-Y. Lee, K. Lee, J. Müller, M. Moll, E. Spiecker, P. Schmuki, Chem. Commun. 2012, 48, 8685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFChurfF&md5=fbaddc1964eea4c136562fb80efff0e0CAS |

[28]  M. Li, W. Luo, D. Cao, X. Zhao, Z. Li, T. Yu, Z. Zou, Angew. Chem. Int. Ed. 2013, 52, 11016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yjsr3J&md5=f19b4b05367f37a4c758cfef605b3e06CAS |

[29]  D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata, R. Abe, J. Kubota, K. Domen, Thin Solid Films 2011, 519, 2087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFKgtg%3D%3D&md5=ade3e9e8a384cda15e3cbe39e01795fdCAS |

[30]  D. Cao, W. Luo, J. Feng, X. Zhao, Z. Li, Z. Zou, Energy Environ. Sci. 2014, 7, 752.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFaksb4%3D&md5=b24b01b804be32d2302ff6b2c2fcd012CAS |

[31]  F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Chem. Sci. (Camb.) 2011, 2, 737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGlur8%3D&md5=de73a00c919e9c2ff7d8397adc6e9883CAS |

[32]  B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, J. Am. Chem. Soc. 2012, 134, 4294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslamtbk%3D&md5=7ce5835cfd3d23fe4f5fd0ff526989b7CAS | 22303953PubMed |

[33]  J. Feng, W. Luo, T. Fang, H. Lv, Z. Wang, J. Gao, W. Liu, T. Yu, Z. Li, Z. Zou, Adv. Funct. Mater. 2014, 24, 3535.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt12it7k%3D&md5=0431084e62d9b291fd0b82f9beca68f1CAS |

[34]  L. Zhang, Y. Song, J. Feng, T. Fang, Y. Zhong, Z. Li, Z. Zou, Int. J. Hydrogen Energy 2014, 39, 7697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVOrsL4%3D&md5=2906a88207faa557ea2cb006e41e5f8dCAS |