Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

N,N-Dialkyl-N′-Chlorosulfonyl Chloroformamidines in Heterocyclic Synthesis. Part XIII.* Cleavage and Rearrangement Reactions of Pyrazolo[1,5-b][1,2,4,6]thiatriazine 1,1-Dioxides

Rebecca E. Norman A , Michael V. Perkins A , Andris J. Liepa B and Craig L. Francis B C
+ Author Affiliations
- Author Affiliations

A School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia.

B CSIRO Manufacturing Flagship, Clayton, Vic. 3168, Australia.

C Corresponding author. Email: craig.francis@csiro.au

Australian Journal of Chemistry 69(1) 61-75 https://doi.org/10.1071/CH15445
Submitted: 24 July 2015  Accepted: 26 August 2015   Published: 15 October 2015

Abstract

Treatment of pyrazolo[1,5-b][1,2,4,6]thiatriazines 1 with the Vilsmeier–Haack reagent afforded pyrazolo[1,5-a][1,3,5]triazines 5. Reaction of compounds 1 with trifluoroacetic anhydride, dimethyl sulfoxide, and triethylamine afforded 5-dimethylsulfanylidene derivatives 8. The guanidino-pyrazole-sulfonic acid 9 was produced from treatment of compounds 1 with trifluoroacetic acid under anhydrous conditions. Similar treatment in the presence of water afforded the desulfonated pyrazolo-guanidine 6. Reactions of 6 with one-carbon electrophiles provided various 4-substituted pyrazolo[1,5-a][1,3,5]triazines 5. Attempted catalytic hydrogenolysis of N7-benzyl pyrazolo[1,5-b][1,2,4,6]thiatriazines 2 in alcohols led to sulfamates 12 from thiatriazine ring cleavage. Ethyl acetate or tert-butanol as solvent allowed successful debenzylation to provide compounds 1. Aminolysis of compounds 2 gave sulfamides 13. Thermal rearrangement of compounds 2 afforded 6-benzyl-pyrazolo[3,4-e][1,2,4]thiadiazines 14.


References

[1]  R. E. Norman, M. V. Perkins, A. J. Liepa, C. L. Francis, Aust. J. Chem. 2013, 66, 1323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKkurvL&md5=110d2096051d79a0f69dcea0a897cfb8CAS |

[2]  R. E. Norman, M. V. Perkins, A. J. Liepa, C. L. Francis, Aust. J. Chem. 2015, 68, 1011.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFaisLzI&md5=c8034eada6d47c222442cbe969ab8bc5CAS |

[3]  A. Vilsmeier, A. Haack, Ber. Dtsch. Chem. Ges. 1927, 60, 119.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. Tojo, M. I. Fernandez, in Oxidation of Alcohols to Aldehydes and Ketones (Series Ed. G. Tojo) 2006, Ch. 2, pp. 97–179 (Springer: New York, NY).

[5]  C. G. Yang, J. Wang, B. Jiang, Tetrahedron Lett. 2002, 43, 1063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslKgsA%3D%3D&md5=9edd14739df21b9fff7644cc7f67476cCAS |

[6]  P. D. Bailey, P. J. Cochrane, F. Irvine, K. M. Morgan, D. P. J. Pearson, K. T. Vealc, Tetrahedron Lett. 1999, 40, 4593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1emurw%3D&md5=d5640dd29c1039dd894f1c908dd5758aCAS |

[7]  T. Shoji, A. Maruyama, M. Maruyama, S. Ito, T. Okujima, J. Higashi, K. Toyota, N. Morita, Bull. Chem. Soc. Jpn. 2014, 87, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisF2gsLw%3D&md5=240e3059e7cb9c66cbf1067c8c30a244CAS |

[8]  K. Omura, D. Swern, Tetrahedron 1978, 34, 1651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXos1Cjtg%3D%3D&md5=90a53a7052790be9c1e16d5d7e36ce7bCAS |

[9]  K. Omura, A. K. Sharma, J. Org. Chem. 1976, 41, 957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1WgtL4%3D&md5=af5fef5cc1ecba7fe155d093a06cc122CAS |

[10]  T. Cablewski, C. L. Francis, A. J. Liepa, Aust. J. Chem. 2008, 61, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFGgt7Y%3D&md5=c5449c92db37afef2dd12869555d9607CAS |

[11]  R. E. Norman, M. V. Perkins, A. J. Liepa, C. L. Francis, Aust. J. Chem. 2015, 68, 1455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVKls7vE&md5=3af0be5732a05988c18361079ad93396CAS |

[12]  A. V. Dolzhenko, A. V. Dolzhenko, W.-K. Chui, Heterocycles 2008, 75, 1575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFyqsr8%3D&md5=fa6a231222b6edd30a1818b4ca8d8272CAS |

[13]  P. Raboisson, D. Schultz, C. Muller, J. Reimund, G. Pinna, R. Mathiue, P. Bernard, Q. Do, R. L. Desjarlais, H. Justiano, C. Lugnier, Eur. J. Med. Chem. 2008, 43, 816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlylt7k%3D&md5=d08b287fd60fa7c90f3cd71094fe7618CAS | 17640774PubMed |

[14]  F. P. L. Lim, A. V. Dolzhenko, Tetrahedron Lett. 2014, 55, 6684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOrtb%2FO&md5=999ff0307d50ea5c0c8fe1b783f22f68CAS |

[15]  S. Zahariev, C. Guarnaccia, D. Lamba, M. Čemažar, S. Pongor, Tetrahedron Lett. 2004, 45, 9423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsbfN&md5=764dc99ae48911a9ef9b2afcac30b0c5CAS |

[16]  A. P. Rajput, P. D. Girase, Int. J. Pharm., Chem. Biol. Sci. 2013, 3, 25.
         | 1:CAS:528:DC%2BC3sXisVequrg%3D&md5=962577fd30b73f6b6f26164f07e017d8CAS |

[17]  N. Schröder, J. Wencel-Delord, F. Glorius, J. Am. Chem. Soc. 2012, 134, 8298.
         | Crossref | GoogleScholarGoogle Scholar | 22548632PubMed |

[18]  M. P. Giovannoni, C. Vergelli, A. Cilibrizzi, L. Crocetti, C. Biancalani, A. Graziano, V. Dal Piaz, M. Loza, M. Cavidad, J. Díaz, A. Gavaldà, Bioorg. Med. Chem. 2010, 18, 7890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKrsr%2FJ&md5=0ff58b67a3d02289073ab750558d83f8CAS | 20937560PubMed |

[19]  J. Kobe, R. Robins, D. E. O’Brien, J. Heterocycl. Chem. 1974, 11, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkvFWntbY%3D&md5=10ac9d26c5855301e9994fee831fbdedCAS |

[20]  F. Abu-Shanab, Int. J. Org. Chem. 2011, 01, 207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFWht7o%3D&md5=b153d8e57460ab037603bce713955ea1CAS |

[21]  H. Insuasty, B. Insuasty, E. Castro, J. Quiroga, R. Abonia, Tetrahedron Lett. 2013, 54, 1722.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVKht7k%3D&md5=a2a7cc51aab77511b6bbbe3274a0be47CAS |

[22]  H. Insuasty, B. Insuasty, E. Castro, J. Quiroga, R. Abonia, M. Nogueras, J. Cobo, Tetrahedron 2012, 68, 9384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2qt7nM&md5=8c2889fa990cdc51a9d80a312bd1fd72CAS |

[23]  See pp. 1–12 in: P. Rylander, Catalytic Hydrogenation in Organic Synthesis 1979 (Academic Press: New York, NY).

[24]  P. Albers, J. Pietsch, S. F. Parker, J. Mol. Catal. Chem. 2001, 173, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFCiurw%3D&md5=659864e6dbfb506ded529fc94fde36e5CAS |

[25]  G. V. Smith, F. Notheisz, A. G. Zsigmond, M. Bartok, New Front. Catal. 1993, 75, 2463.
         | 1:CAS:528:DyaK3sXkvFGrtrg%3D&md5=4678dcaa5e90ad419e7103b3a09c13a3CAS |

[26]  A. A. Haddach, A. Kelleman, M. V. Deaton-Rewolinski, Tetrahedron Lett. 2002, 43, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSg&md5=00da3dd6c31f3b9bee1f5982de88ee6aCAS |

[27]  A. L. Williams, S. R. Dandepally, S. V. Kotturi, Mol. Divers. 2010, 14, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOkurnP&md5=e3ac1a5f567093e838978867e1b868e5CAS | 19936959PubMed |

[28]  E. T. Nadres, A. Lazareva, O. Daugulis, J. Org. Chem. 2011, 76, 471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ensrrP&md5=ee19c8d95991d99603cdfd2f14fc225cCAS | 21192652PubMed |

[29]  B. B. Touré, B. S. Lane, D. Sames, Org. Lett. 2006, 8, 1979.
         | Crossref | GoogleScholarGoogle Scholar | 16671761PubMed |

[30]  R. R. Singhaus, R. C. Bernotas, R. Steffan, E. Matelan, E. Quinet, P. Nambi, I. Feingold, C. Huselton, A. Wilhelmsson, A. Goos-Nilsson, J. Wrobel, Bioorg. Med. Chem. Lett. 2010, 20, 521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2itb3L&md5=f6e023d13be20f261c782c1e32319db2CAS | 20005711PubMed |

[31]  P. V. Kumar, W. S. Lin, J. S. Shen, D. Nandi, H. M. Lee, Organometallics 2011, 30, 5160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOju7%2FP&md5=6c1aaae00f4a190956b9881bb53a6a7cCAS |

[32]  H. Y. Fu, L. Chen, H. Doucet, J. Org. Chem. 2012, 77, 4473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFKltL0%3D&md5=abb3c3939359df707421c1aadd4a1b4aCAS | 22506766PubMed |

[33]  S. Grosse, C. Pillard, S. Massip, J. M. Léger, C. Jarry, S. Bourg, P. Bernard, G. Guillaumet, Chem. – Eur. J. 2012, 18, 14943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCgur7K&md5=141485b60096e4e175ada954fd7df9b6CAS | 23086664PubMed |