Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

DFT and SERS Study of Adsorption of 1,4-Dimethoxy-2-nitro-3-methylanthracene-9,10-dione onto Silver Nanoparticles

K. Geetha A , T. N. Rekha B , M. Umadevi A E , Beulah J.M. Rajkumar B , G.V. Sathe C , P. Vanelle D , T. Terme D and O. Khoumeri D
+ Author Affiliations
- Author Affiliations

A Department of Physics, Mother Teresa Women’s University, Kodaikanal 624101, India.

B PG & Research Department of Physics, Lady Doak College, Madurai, 625002, India.

C UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017, India.

D Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France.

E Corresponding author. Email: ums10@yahoo.com

Australian Journal of Chemistry 69(1) 76-84 https://doi.org/10.1071/CH15161
Submitted: 4 April 2015  Accepted: 13 June 2015   Published: 13 July 2015

Abstract

Surface-enhanced Raman scattering (or spectroscopy), commonly known as SERS, has been employed to investigate the adsorption mechanism and orientation of 1,4-dimethoxy-2-nitro-3-methylanthracene-9,10-dione (DMNMAD) molecule onto silver. Silver nanoparticles (Ag NPs) were synthesized based on a solution combustion method using citric acid as a fuel. Scanning electron microscopy and transition electron microscopy studies confirm the crystalline nature and morphology of the synthesized silver nanoparticles. Theoretical normal Raman spectra (nRs) and SERS spectra of the DMNMAD molecule, simulated based on DFT/B3PW91 level of theory were validated experimentally. Experimental and theoretical vibrational modes correlate well, confirming the reliable assignments of the vibrational bands. Enhancement of C=O stretching and C–H in-plane vibrational modes in the SERS spectrum indicates the ‘stand-on’ orientation of the molecule on the silver nanoparticles after adsorption. The frontier molecular orbitals confirm the charge transfers between the molecule and silver nanoparticles following the process of adsorption. As anthraquinone derivatives have been recently used as potent anti-tumour drugs, the adsorption studies reported in the current investigation can pave way to the potential application of DMNMAD in drug delivery.


References

[1]  J. Schripsema, V. A. Ramos, R. Verpoorte, Phytochemistry 1999, 51, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVylsrw%3D&md5=8b238d125a98a0fb0bd60f37a6f60329CAS |

[2]  L. Yanzhu, D. Min, S. Ziweri, Tsinghua Sci. Technol. 1999, 4, 4.

[3]  J. W. Lown, Chem. Soc. Rev. 1993, 1, 65.

[4]  M. Hirsikorpi, T. Kamarainen, T. Teeri, A. Hohtola, Plant Sci. 2002, 162, 537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Cmtbc%3D&md5=3fb0a630dfe0be8bb5ad5385ea5437faCAS |

[5]  R. H. Thomson, Naturally Occurring Quinones 1971 (Academic Press: New York, NY).

[6]  S. Khoee, S. Zamani, Eur. Polym. J. 2007, 43, 2096.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2ntbg%3D&md5=da70b59a534dd3c09dc07955a5d64777CAS |

[7]  L. S. Nair, C. T. Laurencin, J. Biomed. Nanotechnol. 2007, 3, 301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVChug%3D%3D&md5=beac156ac976e1c3247b9bc620e2447eCAS |

[8]  K. S. Lee, M. A. El-Sayed, J. Phys. Chem. B 2006, 110, 19220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFahs7w%3D&md5=c7dfc09fdb4b151195491d213fd68113CAS | 17004772PubMed |

[9]  P. K. Jain, X. Huang, I. H. El-Sayed, M. A. E. L. Sayed, Acc. Chem. Res. 2008, 41, 1578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlWgtrY%3D&md5=7a62234dfa411ddb09b38629f8e23667CAS | 18447366PubMed |

[10]  N. C. Mueller, B. Nowack, Environ. Sci. Technol. 2008, 42, 4447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslOju7k%3D&md5=ea3c382874fc16606341b7f3857754ceCAS | 18605569PubMed |

[11]  A. M. Tolmachev, D. A. Firsov, T. A. Kuznetsova, K. M. Anuchin, Prot. Met. 2009, 45, 177.

[12]  G. D. Fleming, I. Golsio, A. Aracena, F. Celis, L. Vera, R. Koch, M. C. Vallette, Spectrochim. Acta, Part A 2008, 71, 1049.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. Fleischmann, P. J. Hendra, A. McQuillan, Chem. Phys. Lett. 1974, 26, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXksFKjtbo%3D&md5=de9aada166e6ec41fec274a68b72d5ebCAS |

[14]  A. Otto, J. Raman Spectrosc. 2003, 3, 593.

[15]  J. Jiang, K. Bosnick, M. Maillard, L. Brus, J. Phys. Chem. B 2003, 107, 9964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFOju7s%3D&md5=791479a383e1dfe6acdd65762101482eCAS |

[16]  J. R. Lombardi, R. L. Birke, J. Phys. Chem. C 2008, 112, 5605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVGntLk%3D&md5=e6cbbe5a5ab702edfce2e87ea0eb9db9CAS |

[17]  J. R. Lombardi, R. L. Birke, Acc. Chem. Res. 2009, 42, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlyhurg%3D&md5=d74bb842ed354c10178f57c3f6b12715CAS | 19361212PubMed |

[18]  K. Kneipp, M. Moskovits, H. Kneipp, Surface Enhanced Raman Scattering 2006 (Springer: Berlin).

[19]  M. Moskovits, J. S. Suh, J. Phys. Chem. 1984, 88, 5526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVSntL4%3D&md5=792d138f9ed7c10c5afa2968de36d114CAS |

[20]  K. Geetha, M. Umadevi, G. V. Sathe, P. Vanelle, T. Terme, O. Khoumeri, Spectrochim. Acta, Part A 2015, 136, 1967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSht77L&md5=f6f1f59ea5d28c10b2de1decc3c0618fCAS |

[21]  M. Anuratha, A. Jawahar, M. Umadevi, V. G. Sathe, P. Vanelle, T. Terme, V. Meenakumari, A. Milton Franklin Benial, Spectrochim. Acta, Part A 2014, 131, 261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqurzK&md5=59c4f1a232667ccb4c06854717e12c0fCAS |

[22]  M. Anuratha, A. Jawahar, M. Umadevi, N. Edayadulla, V. G. Sathe, V. Meenakumari, A. Milton Franklin Benial, Int. J. Spectrosc. 2014, 2014, 17502.

[23]  K. Geetha, M. Umadevi, G. V. Sathe, R. Erenler, Spectrochim. Acta. Part A 2013, 116, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVGjurvE&md5=479ce453c5c80baaa32b0a842fc42014CAS |

[24]  M. Anuratha, A. Jawahar, M. Umadevi, V. G. Sathe, P. Vanelle, T. Terme, V. Meenakumari, A. Milton Franklin Benial, Spectrochim. Acta, Part A 2013, 105, 218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislegtbc%3D&md5=f88574a78d352de4d87f94397c354acfCAS |

[25]  K. Geetha, M. Umadevi, G.V. Sathe, P. Vanelle, T. Terme, O. Khoumeri, J. Mol. Struct. 2014, 1059, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKksbo%3D&md5=28c4c4d1e66585b10d4d7f8ec5851015CAS |

[26]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, B. G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.03 2003 (Gaussian Inc.: Pittsburgh, PA).

[27]  S. M. Tekarli, M. L. Drummond, T. G. Williams, T. R. Cundari, A. K. Wilson, J. Phys. Chem. A 2009, 113, 8607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2ms7k%3D&md5=96e32ed019d084f2e736c648fe86ebacCAS | 19572689PubMed |

[28]  T. N. Rekha, B. J. M. Rajkumar, Can. J. Phys. 2015, 93, 318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlSitbw%3D&md5=d5993b6a2ededba6b84b87f41aa518adCAS |

[29]  J. Zhou, Z. H. Li, W. N. Wang, K. N. Fan, J. Phys. Chem. A 2006, 110, 7167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlKmtbY%3D&md5=88f72ed7ea48de888c20a540210c8885CAS | 16737267PubMed |

[30]  S. Zhao, Y. L. Ren, Y. Ren, J. J. Wang, W. Yin, J. Phys. Chem. A 2010, 114, 4917.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Oht7c%3D&md5=ddc1548210ba955c2c1b7a998e217f24CAS | 20307058PubMed |

[31]  L. Cheng, K. X. Yu, L. Z. Wen, M. A. Jie, M. Y. Ming, J. Phys. Chem. A 2011, 115, 9273.
         | Crossref | GoogleScholarGoogle Scholar | 21780834PubMed |

[32]  D. Sajan, V. B. Jothy, T. Kuruvilla, I. H. Joe, J. Chem. Sci. 2010, 122, 511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSlu7%2FI&md5=ec63d9feaf56b5b24caf00251e8da163CAS |

[33]  O. Khoumeri, M. Montana, T. Terme, P. Vanelle, P. First, Tetrahedron 2008, 641, 1237.

[34]  M. Arivazhagan, R. Kavitha, J. Mol. Struct. 2012, 1011, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1agu70%3D&md5=85067565ee38c23bc4e96270f9772c2dCAS |

[35]  M. Govindarajan, M. Karabacak, A. Suvitha, S. Periandy, Spectrochim. Acta, Part A 2012, 89, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFOnsbs%3D&md5=20dd5a251a25162ea2c20fbbfa3249f4CAS |

[36]  V. Balachandran, A. Lakshmi, A. Janaki, J. Mol. Struct. 2011, 1006, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyjsLzL&md5=6416bf532e228fefc710a5d28fd39688CAS |

[37]  R. Gayathri, M. Arivazhagan, Spectrochim. Acta, Part A 2011, 81, 242.
         | 1:CAS:528:DC%2BC3MXhtF2rsb3J&md5=515224dea764067a5bd957fa03ae92a5CAS |

[38]  V. Krishnakumar, D. Barathi, R. Mathammal, Spectrochim. Acta, Part A 2012, 86, 196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CgurnN&md5=849fe33792d7227d788730f7b40c287cCAS |

[39]  S. K. Freeman, Application of Laser Raman Spectroscopy 1974 (Wiley: New York, NY).

[40]  B. S. Yadava, A. Israt, P. Kumar, P. Yadav, Indian J. Pure Appl. Phys. 2003, 43, 573.

[41]  M. Pagannone, B. Formari, G. Mattel, Spectrochim. Acta, Part A 1987, 43, 621.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  J. Mohan, Organic Spectroscopy: Principle and Applications, 2nd ed. 2011 (Narosa Publishing House: New Delhi).

[43]  V. Krishnakumar, V. Balachandran, Spectrochim. Acta, Part A 2005, 61, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fls1ykuw%3D%3D&md5=a59cf861c0069543014aff9414d0eaadCAS |

[44]  G. Joshi, N. L. Singh, Spectrochim. Acta, Part A 1967, 23, 1341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktlOrtbs%3D&md5=85f7a2b297efad3fc6f1f094b598de8dCAS |

[45]  N. P. G. Reoeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structure 1994 (Wiley: New York, NY).

[46]  M. Umadevi, P. Vanelle, T. Terme, V. Ramakrishnan, J. Raman Spectrosc. 2003, 34, 172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVOkt7g%3D&md5=f50837526ec3eefb98d628b3c9055608CAS |

[47]  N. L. Owen, R. E. Hester, R. E. Hester, Spectrochim. Acta, Part A 1969, 25, 343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXnt1ektQ%3D%3D&md5=3147fff3690bf6e8c6dd5ed423a2b51aCAS |

[48]  G. E. Campagnaro, J. L. Wood, J. Mol. Struct. 1970, 6, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkslWlsb4%3D&md5=ec6e44841004eed42f2e1481a222854fCAS |

[49]  E. F. Mooney, Spectrochim. Acta, Part A 1964, 20, 1343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXksFahtLw%3D&md5=c0bab37b520bd43605000df6daa27bf5CAS |

[50]  M. Karabacak, M. Cinar, S. Ermec, M. Kurt, J. Raman Spectrosc. 2010, 41, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Slug%3D%3D&md5=6d65099483b21a99f474fe2da16534cdCAS |

[51]  A. U. Rani, N. Sundaraganesan, M. Kurt, M. Cinar, M. Karabacak, Spectrochim. Acta, Part A 2010, 75, 1523.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  C. Sengamalai, M. Arivazhagan, K. Sampathkumar, Elixir Int. J. 2013, 56, 13291.

[53]  A. K. Ojha, A. Singh, S. Dasgupta, R. K. Singh, A. Roy, Chem. Phys. Lett. 2006, 431, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFehsrrK&md5=4dbb061a7fcbd3178c32f41f0421ae29CAS |

[54]  P. S. Mdluli, N. M. Sosibo, N. Revrapasadu, P. Karmanis, J. Leszczynski, J. Mol. Struct. 2009, 93, 532.

[55]  J. S. Suh, M. Moscovits, J. Am. Chem. Soc. 1986, 108, 4711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xksl2gsLo%3D&md5=85b0706fc92af2298979535d92bbbc05CAS |

[56]  G. Ramakrishna, P. Mohandas, S. Umapathy, J. Phys. Chem. 1996, 100, 16472.
         | Crossref | GoogleScholarGoogle Scholar |