Self-Assembled Mace-Like Fe3O4 Nanostructures as a Lithium–Air Battery Cathode Material
Hui Lv A , Rongli Jiang A B , Xiaoyu Zhang A and Jing Wang AA College of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.
B Corresponding author. Email: ronglijcumt@163.com
Australian Journal of Chemistry 69(6) 683-688 https://doi.org/10.1071/CH15417
Submitted: 10 July 2015 Accepted: 8 November 2015 Published: 28 January 2016
Abstract
Mace-like Fe3O4 nanostructures with a length of 200–300 nm and a diameter of 10–30 nm were successfully synthesized via a microemulsion-mediated solvothermal method and used as an electrode catalyst for lithium–air batteries. The results showed that the mace-like Fe3O4 nanostructures were obtained by adjusting the NaOH concentration and reaction temperature, and by adding polyethylene glycol-1000. The growth and assembly mechanism of the mace-like Fe3O4 nanostructures was also discussed. Polyethylene glycol-1000 not only acted as a soft template to form Fe3O4 nanorods, but also assisted in the assembly of the Triton X-100-decorated Fe3O4 nanoparticles onto the nanorods. The results of charge–discharge tests showed that the lithium–air battery based on mace-like Fe3O4 nanostructures exhibited a high discharge capacity of 1427 mA h g−1 in ambient air. The unique one-dimensional mace-like Fe3O4 nanostructures could effectively enhance the catalytic activity for the oxygen evolution reduction process, which is effective for decreasing the charging potential plateau.
References
[1] J. J. Wang, Y. L. Li, X. L. Sun, Nano Energy 2013, 2, 443.| Crossref | GoogleScholarGoogle Scholar |
[2] Z. Xiao, Y. Xia, Z. H. Ren, Z. Y. Liu, G. Xu, C. Y. Chao, X. Li, G. Shen, G. R. Han, J. Mater. Chem. 2012, 22, 20566.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlagsbfK&md5=a638a1f39d31abb988f32b6f24455d07CAS |
[3] Q. Y. An, F. Lv, Q. Q. Liu, C. H. Han, K. N. Zhao, J. Z. Sheng, Q. L. Wei, M. Y. Yan, L. Q. Mai, Nano Lett. 2014, 14, 6250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGkt7%2FE&md5=e557a2508177324c39dfdb5a73b8c432CAS |
[4] Y. L. Ding, F. T. Liu, Q. H. Jiang, B. Du, H. D. Sun, J. Inorg. Organomet. Polym. Mater. 2013, 23, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVyktbY%3D&md5=99cf945d485695d5afa7128be526a32fCAS |
[5] Y. Liu, Z. F. Gao, Q. B. Sun, Y. P. Zeng, Hyperfine Interact. 2013, 219, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFWnsrc%3D&md5=a1fa5c34acc1cb35667a7e3008989616CAS |
[6] J. X. Wan, X. Y. Chen, Z. H. Wang, X. G. Yang, Y. T. Qian, J. Cryst. Growth 2005, 276, 571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFejs7o%3D&md5=b3b1d2f07543c2a5dc307921c6131caaCAS |
[7] G. C. Xi, C. Wang, X. Wang, Eur. J. Inorg. Chem. 2008, 2008, 425.
| Crossref | GoogleScholarGoogle Scholar |
[8] Q. Guan, J. L. Cheng, B. Wang, W. Ni, G. F. Gu, X. D. Li, L. Huang, G. C. Yang, F. D. Nie, ACS Appl. Mater. Interfaces 2014, 6, 7626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlsl2qs7o%3D&md5=8eb9255ab628bd508e55f4397d532633CAS | 24716615PubMed |
[9] S. Chen, J. W. Zhu, Q. F. Han, Z. J. Zheng, Y. Yang, X. Wang, Cryst. Growth Des. 2009, 9, 4357.
[10] X. Wei, J. Su, X. H. Li, J. S. Chen, Dalton Trans. 2014, 43, 16173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFShtbbL&md5=ece3ee5750156fa693f071ba1d4592ceCAS | 25251637PubMed |
[11] Z. P. Cheng, X. Z. Chu, J. Z. Yin, H. Zhong, J. M. Xu, Mater. Lett. 2012, 75, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVOntbo%3D&md5=04dff810ed9dea52b20104a126d06d92CAS |
[12] S. F. Zhang, W. Wu, X. H. Xiao, J. Zhou, F. Ren, C. Z. Jiang, Nanoscale Res. Lett. 2011, 6, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFGkt7s%3D&md5=7d075361ad06a5071a9220064b3b9f39CAS |
[13] R. J. Pan, Z. L. Li, Appl. Mech. Mater. 2014, 492, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVKlsrk%3D&md5=389df90e93ab3653a56b420961878b97CAS |
[14] A. G. Yan, Y. J. Liu, Y. Liu, X. H. Li, Z. Lei, P. T. Liu, Mater. Lett. 2012, 68, 402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OmtbrN&md5=d8259e0404d29416578bdecfaa8677c5CAS |
[15] M. T. Chang, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Y. Murakami, D. Shindo, Adv. Mater. 2007, 19, 2290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSktrfN&md5=18b2faa82d1032665d8ac380d829b500CAS |
[16] Z. S. Wu, S. B. Yang, Y. Sun, K. Parvez, X. L. Feng, K. Mullen, J. Am. Chem. Soc. 2012, 134, 9082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFCltbg%3D&md5=526be03f90ebfde13a6541fa73adb2c4CAS | 22624986PubMed |
[17] F. Q. Yu, Y. Z. Huang, A. J. Cole, V. C. Yang, Biomaterials 2009, 30, 4716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Cisrs%3D&md5=320896b687ab0224c0d7aaf036eecb1fCAS |
[18] I. Milosevic, H. Jouni, C. David, F. Warmont, D. Bonnin, L. Motte, J. Phys. Chem. C 2011, 115, 18999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOitLfF&md5=eb27116131fad6b5f244c6d2ac1e87aaCAS |
[19] S. Gil, C. R. Correia, J. F. Mano, Adv. Healthcare Mater. 2015, 4, 883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslynu70%3D&md5=61f169a9c0f3f940477c6143fb50861fCAS |
[20] J. Liu, S. Q. Liu, S. X. Zhuang, X. W. Wang, F. Y. Tu, Ionics 2013, 19, 1255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgsLfK&md5=88eae0e080f7366123e3b5a27a495614CAS |
[21] Y. Shi, M. M. Shi, Y. Q. Qiao, J. P. Tu, H. Z. Chen, Nanotechnology 2012, 23, 395601.
| Crossref | GoogleScholarGoogle Scholar | 22962279PubMed |
[22] H. Y. Sun, B. Chen, X. L. Jiao, Z. Jiang, Z. H. Qin, D. R. Chen, J. Phys. Chem. C 2012, 116, 5476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFagsrk%3D&md5=ff564b488744b599b46fa6f8ac6565d7CAS |
[23] T. Togashi, M. Umetsu, T. Naka, S. Ohara, Y. Hatakeyama, T. Adschiri, J. Nanopart. Res. 2011, 13, 3991.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSiu7%2FM&md5=614c7f13f3ec3702fa280b8d11442a07CAS |
[24] C. L. Han, W. P. Cai, W. Tang, G. Z. Wang, C. H. Liang, J. Mater. Chem. 2011, 21, 11188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVynsbo%3D&md5=98b3b989bfa53438c1cfab183612df53CAS |
[25] S. Y. Lian, Z. H. Kang, E. B. Wang, M. Jiang, C. W. Hu, L. Xu, Solid State Commun. 2003, 127, 605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVart7k%3D&md5=2a7756edacb574f071d8bb425db56defCAS |
[26] J. Wang, Z. M. Peng, Y. J. Huang, Q. W. Chen, J. Cryst. Growth 2004, 263, 616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVKjsLc%3D&md5=85109a20a9335de23a938093f01ba30dCAS |
[27] J. Y. Yuan, H. Schmalz, Y. Y. Xu, N. Miyajima, M. Drechsler, M. W. Mller, F. Schacher, A. H. E. Müller, Adv. Mater. 2008, 20, 947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wmtrw%3D&md5=51fd6e6a0c69993664688cffa07e200bCAS |
[28] X. H. Yang, Y. Y. Xia, J. Solid State Electrochem. 2010, 14, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWmu7%2FJ&md5=0d7e22ecefc681d383754573c3c14c8dCAS |
[29] Y. Y. Shao, S. Park, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, ACS Catal. 2012, 2, 844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFGitLg%3D&md5=c1f51898c4cefe4e6fc12a1640d2923eCAS |
[30] T. Zhang, H. S. Zhou, Nat. Commun. 2013, 4, 1817.
| Crossref | GoogleScholarGoogle Scholar | 23652005PubMed |