Use of Modified γ-Alumina Nanoparticles for the Extraction and Preconcentration of Trace Amounts of Cadmium Ions
Ali Mirabi A D , Ali Shokuhi Rad B D , Mohammad Reza Jamali C and Nasim Danesh AA Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr 4765161964, Iran.
B Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr 4765161964, Iran.
C Department of Chemistry, Payam Noor University, Tehran 4947769911, Iran.
D Corresponding authors. Email: mirabi2012@yahoo.com; a.shokuhi@gmail.com
Australian Journal of Chemistry 69(3) 314-318 https://doi.org/10.1071/CH15391
Submitted: 1 July 2015 Accepted: 4 August 2015 Published: 24 August 2015
Abstract
We used γ-Al2O3 nanoparticles coated with sodium dodecyl sulfate–4-(2-pyridylazo)resorcinol (SDS–PAR) as an innovative sorbent for the extraction and preconcentration of trace amounts of cadmium cations. The properties of the prepared sorbent were examined by scanning electron microscopy. The effects of different parameters towards the separation and preconcentration of trace amounts of cadmium ions, such as the quantity of sorbent, the pH value, and choice of solvent for recovery of the sorbent, were investigated. Under optimum operating conditions, a cadmium ion enrichment factor of 20 was obtained using 10.0 mL of sample. The detection limit of this method for CdII cations was 0.2 ng mL–1 (n = 7) within a linear range of 0.6–340 ng mL–1 and a relative standard deviation of 1.8 % (n = 10). The method was effectively applied to the analysis of cadmium ions in food and herbal and water samples.
References
[1] M. Tuzen, M. Soylak, K. Parlar, Bull. Environ. Contam. Toxicol. 2005, 75, 284.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFShsLrK&md5=bc388ed6f769b78aef4ced84e300303fCAS | 16222499PubMed |
[2] P. Bermejo-Barrera, A. Moreda-Pineiro, J. Moreda-Pineiro, A. Bermejo-Barrera, J. Anal. At. Spectrom. 1997, 12, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFahtbo%3D&md5=7e213cefa30dd52f76cbc4dc14958974CAS |
[3] A. Afkhami, T. Madrakian, H. Siampour, J. Hazard. Mater. 2006, 138, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFehsLbI&md5=53e3fc5657db314bf3dd6b042c6aca83CAS | 16806678PubMed |
[4] European Communities (Drinking Water) Regulations 2000, S.I. No. 439.
[5] J. Minczewski, J. Chwastowska, R. Dybezynski, Separation and Preconcentration Methods in Inorganic Trace Analysis 1982 (Ellis Horwood: Chichester).
[6] A. Mirabi, S. N. Hosseini, Trends Appl. Sci. Res. 2012, 7, 541.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. Ghaedi, M. R. Fathi, A. Shokrollahi, F. Shajarat, Anal. Lett. 2006, 39, 1171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFamtb4%3D&md5=5a36fc4c02e94ad86b88bb9bc80f278bCAS |
[8] H. Cesur, C. Aksu, Anal. Sci. 2006, 22, 727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVejs7w%3D&md5=fd7036ba24d2eb1ca71f554dd3bb7656CAS | 16770052PubMed |
[9] M. Ghaedi, F. Ahmadi, H. Karimi, S. Gharaghani, J. Korean Chem. Soc. 2006, 50, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVCktrw%3D&md5=4d39b87c05331eb7c344db78af27a446CAS |
[10] M. Soylak, I. Narin, Chem. Anal. (Warsaw, Pol.) 2005, 50, 705.
| 1:CAS:528:DC%2BD2MXhtVOlu77O&md5=d3a14bb19076544502ba46b381b62b5eCAS |
[11] K. S. Rao, T. Balaji, T. P. Rao, P. J. Purohit, Y. Babu, G. R. K. Naidu, Chem. Anal. 2004, 49, 395.
| 1:CAS:528:DC%2BD2cXlvFKhs7k%3D&md5=324a4a1dffc6c0542ba11b19404ec10aCAS |
[12] F. J. Alguacil, P. Adeva, M. Alonso, Gold Bull. 2005, 38, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgsrvO&md5=6a7b8f0e2aca67fd105ff993587bde84CAS |
[13] S. Kagaya, T. Sagisaka, S. Miwa, K. Morioka, K. Hasegawa, Bull. Chem. Soc. Jpn. 2006, 79, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsF2lsbw%3D&md5=7814e391b79db02c980d4d0fbf3c218aCAS |
[14] A. U. Karatepe, M. Soylak, L. Elci, Anal. Lett. 2002, 35, 1561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslyksb0%3D&md5=db8a77a88eb1eb5c249480e92b490c43CAS |
[15] Y. Zhang, W. H. Luo, H. Li, Spectrosc. Spect. Anal. 2005, 25, 576.[in Chinese].
[16] A. Mirabi, A. Fasamanesh, Asian J. Chem. 2012, 24, 3420.
| 1:CAS:528:DC%2BC38Xos1ans7Y%3D&md5=d886d8aa4042ae6ba4d3d519e63dd518CAS |
[17] M. Behbahani, A. Bagheri, M. M. Amini, O. Sadeghi, M. Salarian, F. Najafi, M. Taghizadeh, Food Chem. 2013, 141, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVCjsbg%3D&md5=3dc5a9a1ed09f225cf8f1f2553341803CAS | 23768325PubMed |
[18] A. A. Ensafi, A. R. Ghaderi, J. Hazard. Mater. 2007, 148, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSmsL4%3D&md5=2c829d6efe55a7172f1c0294d1384e2aCAS | 17391841PubMed |
[19] C. Z. Huang, B. Hu, Spectrochim. Acta, Part B 2008, 63, 437.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. Alvand, F. Shemirani, Microchim. Acta 2014, 181, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOitL7J&md5=c24e9be3156eb18c3e2824631bc23648CAS |
[21] P. Liang, L. Peng, Talanta 2010, 81, 673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisF2itbs%3D&md5=2808f581e3a89a98482617c9937dbb79CAS | 20188980PubMed |
[22] M. Ghaedi, A. Shokrollahi, F. Ahmadi, J. Hazard. Mater. 2007, 142, 272.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVejtLk%3D&md5=9d5a2cc1510f81a38df8cb1ce6d56171CAS | 17011124PubMed |
[23] M. Ghaedi, H. Tavallali, A. Shokrollahi, M. Zahedi, M. Montazerozohori, M. Soylak, J. Hazard. Mater. 2009, 166, 1441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFKjtbw%3D&md5=fbb7d812ef9e7c25d92049272d568977CAS | 19200648PubMed |
[24] R. E. Sturgeon, S. S. Berman, S. N. Willie, Talanta 1982, 29, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xkt1ygsL0%3D&md5=d59eab2a96b5cdabb2291c5c6765a05eCAS | 18963107PubMed |
[25] E. Vassileva, N. Furuta, J. Anal. Chem. 2001, 370, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFGmsb8%3D&md5=db55ae42ccce864f0d153bedd4f05c37CAS |
[26] R. J. Cassella, V. A. Salim, L. S. Jesuino, Talanta 2001, 54, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslCqtb8%3D&md5=72f13fe777351b8a5c38e90171866d54CAS | 18968226PubMed |
[27] S. Tsakovski, K. Benkhedda, Anal. Chim. Acta 2002, 453, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlCntg%3D%3D&md5=139145b82add37ea7ac032f015159e6dCAS |
[28] J. N. King, J. S. Fritz, Anal. Chem. 1985, 57, 1016.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsF2ls7c%3D&md5=660a06ba35224dbf38f72f079202cc9aCAS |
[29] M. Yaman, J. Anal. At. Spectrom. 1999, 14, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXos1Ggtw%3D%3D&md5=31e17f394bc6807ae17918dfc9c3831cCAS |
[30] A. Henglein, Chem. Rev. 1989, 89, 1861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmsVSmsr4%3D&md5=eacffa621b9f1161ab4a219f01f8ae53CAS |
[31] Q. J. Xue, K. Xu, Nanochemistry, Prog. Chem. 2000, 12, 431.[in Chinese].
| 1:CAS:528:DC%2BD3MXhtFKqsbc%3D&md5=1c70d6db539609da235a35038fd932daCAS |
[32] L. Chunming, G. Yihang, Z. Xiaoliang, Spectrosc. Spect. Anal. 1997, 17, 69.[in Chinese].
[33] F. Shemirani, B. T. Sadat Akhavi, Anal. Lett. 2001, 34, 2179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVSnsLk%3D&md5=31dbb9951f96f3095866d1bc40f3b742CAS |
[34] J. A. Mendez, J. B. Garcia, R. M. Pena Crecente, S. G. Martin, Talanta 2011, 85, 2361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kms7jN&md5=50ac66135eefb9080830dca9087bbe53CAS | 21962654PubMed |
[35] A. Moghimi, R. Ghiasi, A. Abedin, S. Ghammamy, Afr. J. Pure Appl. Chem. 2009, 3, 51.
| 1:CAS:528:DC%2BD1MXhtFKrsLnI&md5=bff6b698d3c787046f73f1d92577e854CAS |
[36] N. Zhang, H. Peng, S. Wang, B. Hu, Microchim. Acta 2011, 175, 121.
| Crossref | GoogleScholarGoogle Scholar |
[37] A. A. Ensafi, A. Zendegi, J. Braz. Chem. Soc. 2008, 19, 11.
| 1:CAS:528:DC%2BD1cXps1Ons78%3D&md5=6965e2615cae051f7ea62ef320e17891CAS |