Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Density Functional Theory Investigation of the Tandem Radical Cyclization of 1-[2-Yl-3-(2-Methoxyphenyl)-prop-2-enyl]-6-oxo-1,6-dihydropyridine-2-carbonitrile

Lang Yuan A and Hai-Tao Yu A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

B Corresponding author. Email: yuhaitao@hlju.edu.cn

Australian Journal of Chemistry 69(3) 319-327 https://doi.org/10.1071/CH15369
Submitted: 22 June 2015  Accepted: 8 August 2015   Published: 3 September 2015

Abstract

A density functional theory investigation of the mechanism of the titled reaction has been performed. The results suggest that the compound 1-[2-iodo-3-(2-methoxyphenyl)-prop-2-enyl]-6-oxo-1,6-dihydropyridine-2-carbonitrile would rather be converted into the titled free radical by deiodination than go by way of a Diels–Alder cycloaddition and HI-elimination to access the experimentally observed product. The deiodination of the radical precursor is followed by tandem radical cyclizations and hydrogen-loss oxidations to generate tetracyclic non-radical products. The mechanism of the tandem reaction was determined by an examination of the calculated reaction barriers, attack trajectories, and interaction energies between key orbitals. Furthermore, the H-loss oxidation of the addition intermediates by several H-abstractors were carefully analyzed. The theoretical results are in close agreement with the available experimental evidence. The detailed reaction mechanism and knowledge of such an intramolecular tandem radical cyclization presented in this study not only provide insight into the nature of tandem cyclizations but also serves as a useful guide for future experimental investigations.


References

[1]  (a) K. C. Majumdar, P. K. Basu, P. P. Mukhopadhyay, Tetrahedron 2004, 60, 6239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVyqt7c%3D&md5=989643f815bb3576f6fa121f3ecd3b72CAS |
      (b) K. C. Majumdar, P. K. Basu, P. P. Mukhopadhyay, Tetrahedron 2005, 61, 10603.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Z. Zard, Chem. Soc. Rev. 2008, 37, 1603.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) U. Wille, Chem. Rev. 2013, 113, 813.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  W. R. Bowman, C. F. Bridge, P. Brookes, M. O. Cloonan, D. C. Leach, J. Chem. Soc., Perkin Trans. 1 2002, 58.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFWhtg%3D%3D&md5=cc959574be189f2ef79a35054e3bb069CAS |

[3]  (a) X. T. Ding, K. Matsuo, L. Xu, J. Yang, L. P. Zheng, Anti-Cancer Drugs 2015, 26, 547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFGntL4%3D&md5=36f4d51f7ac101c203cbdbf24a1805e2CAS |
      (b) K. T. Householder, D. M. DiPerna, E. P. Chung, G. M. Wohlleb, H. D. Dhruv, M. E. Berens, R. W. Sirianni, Int. J. Pharm. 2015, 479, 374.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) X. X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 12230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt12rsr4%3D&md5=e6d9d363c16c5491e54665e2d163ba2aCAS |
      (b) M. Tiecco, Acc. Chem. Res. 1980, 13, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) P. Dowd, W. Zhang, Chem. Rev. 1993, 93, 2091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVSns74%3D&md5=d06860349adafccba711ee00760f9d8eCAS |
      (b) R. K. Mohamed, S. Mondal, B. Gold, C. J. Evoniuk, T. Banerjee, K. Hanson, I. V. Alabugin, J. Am. Chem. Soc. 2015, 137, 6335.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. K. Kumar, G. R. Kumar, T. J. Reddy, B. Sridhar, M. S. Reddy, Org. Lett. 2015, 17, 2226.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Debnath, S. Mondal, J. Org. Chem. 2015, 80, 3940.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. Yuan, H.-T. Yu, Comput. Theor. Chem. 2014, 1044, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWjtLbJ&md5=f5d1b8983c9548d26abfe7f379ac7a3cCAS |

[7]  (a) G. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112, 6104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWitbbJ&md5=f0593c27f78abac4cf5cc1f74873a436CAS | 22950860PubMed |
      (b) T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, Chem. Rev. 2007, 107, 1011.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Hierold, D. W. Lupton, Org. Lett. 2012, 14, 3412.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. C. Majumdar, S. Alam, Org. Lett. 2006, 8, 4059.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) Y.-J. Chi, H.-T. Yu, Comput. Theor. Chem. 2013, 1005, 75.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOqsLbI&md5=7403619918a5fd17b3b441b8f831fba6CAS |
      (b) Y.-J. Chi, H.-T. Yu, Comput. Theor. Chem. 2013, 1025, 52.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) F. H. Seubold, J. Am. Chem. Soc. 1953, 75, 2532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXhvFymtg%3D%3D&md5=407c516280bd374bf3890634b96529c1CAS |
      (b) J. W. Wilt, R. A. Dabek, K. C. Welzel, J. Org. Chem. 1972, 37, 425.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. T. Banks, J. C. Scaiano, J. Phys. Chem. 1995, 99, 3527.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=bfdb70e4e4379a3174aa2ed82502087cCAS |

[11]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).

[12]  (a) S. H. Kyne, C. H. Schiesser, H. Matsubara, J. Org. Chem. 2008, 73, 427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVemsbbL&md5=1d8cd9099f8d7899bd56e6897eff3843CAS | 18088139PubMed |
      (b) U. Wille, J. C.-S. Tan, E.-K. Mucke, J. Org. Chem. 2008, 73, 5821.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) U. Wille, J. Org. Chem. 2006, 71, 4040.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) U. Wille, G. Heuger, C. Jargstorff, J. Org. Chem. 2008, 73, 1413.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. H. Schiesser, U. Wille, H. Matsubara, I. Ryu, Acc. Chem. Res. 2007, 40, 303.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) U. Wille, J. Phys. Chem. A 2006, 110, 2195.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) U. Wille, J. Andropof, Aust. J. Chem. 2007, 60, 420.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXpvFyitA%3D%3D&md5=bd8f2ccf089c5f66b00a024962a7e278CAS |

[14]  P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlyju70%3D&md5=57060fef7ba02e3aea87bd25bd34cb84CAS |

[15]  (a) H. P. Hratchian, H. B. Schlegel, J. Chem. Theory Comput. 2005, 1, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslCrurg%3D&md5=981da990ce59c8d1f4a94926d3b495a8CAS |
      (b) H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 2004, 120, 9918.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
         | Crossref | GoogleScholarGoogle Scholar | 20331284PubMed |

[17]  (a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtFSmsbw%3D&md5=e5436f82a74e69d594ad55141ba240eaCAS |
      (b) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 15, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkslaksro%3D&md5=819c9f3453e64b204c33e5d7569c5d9bCAS |
      (b) R. A. Marcus, J. Phys. Chem. 1968, 72, 891.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) P. R. Rablen, B. D. McLarney, B. J. Karlow, J. E. Schneider, J. Org. Chem. 2014, 79, 867.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFWitw%3D%3D&md5=dc58997f7075b7faabed92c778744297CAS | 24437451PubMed |
      (b) A. Thangavel, I. A. Elder, C. Sotiriou-Leventis, R. Dawes, N. Leventis, J. Org. Chem. 2013, 78, 8297.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. I. Schuster, J. Org. Chem. 2013, 78, 6811.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Cavattoni, T. D. Giacco, O. Lanzalunga, M. Mazzonna, P. Mencarelli, J. Org. Chem. 2013, 78, 4886.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) K. Troshin, H. Mayr, J. Org. Chem. 2013, 78, 2649.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) K. J. Cahill, R. P. Johnson, J. Org. Chem. 2013, 78, 1864.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) J. M. Zurek, R. L. Rae, M. J. Paterson, M. W. P. Bebbington, Molecules 2014, 19, 15535.
         | Crossref | GoogleScholarGoogle Scholar | 25268713PubMed |
      (b) S. S. Borisevich, A. V. Kovalskaya, I. P. Tsypysheva, S. L. Khursan, J. Theor. Comput. Chem. 2014, 13, 1450048.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C.-M. Wang, Z.-H. Liu, Y.-K. Chen, J.-M. Han, Y.-L. Chen, M.-M. Miao, H. Cao, Comput. Theor. Chem. 2013, 1017, 174.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. M. Sarotti, Org. Biomol. Chem. 2014, 12, 187.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. D. E. Forbes, Carbon-Centered Free Radicals and Radical Cations: Structure, Reactivity, and Dynamics 2010 (John Wiley & Sons, Inc.: Hoboken, NJ).

[22]  (a) I. Ryu, H. Miyazato, H. Kuriyama, K. Matsu, M. Tojino, T. Fukuyama, S. Minakata, M. Komatsu, J. Am. Chem. Soc. 2003, 125, 5632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVGgsr8%3D&md5=6ecd7b476961eb3ac3d50dd42efbe9f4CAS | 12733892PubMed |
         (b) H. Togo, Advanced Free Radical Reactions for Organic Synthesis 2004 (Elsevier: Amsterdam).

[23]  (a) S. Mondal, B. Gold, R. K. Mohamed, H. Phan, I. V. Alabugin, J. Org. Chem. 2014, 79, 7491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFeltbvI&md5=5b2241f9211a937fa97ebf8b13906019CAS | 25011054PubMed |
      (b) A. Kamimura, T. Kotake, Y. Ishihara, M. So, T. Hayashi, J. Org. Chem. 2013, 78, 3961.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Wu, S. M. Wong, F. Mao, T. L. Chan, F. Y. Kwong, Org. Lett. 2012, 14, 5306.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. F. O’Rourke, K. A. Davies, J. E. Wulff, J. Org. Chem. 2012, 77, 8634.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. K. Kidder, A. L. Chaffee, M. T. Nguyen, A. C. Buchanan, J. Org. Chem. 2011, 76, 6014.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) D. S. Roman, Y. Takahashi, A. B. Charette, Org. Lett. 2011, 13, 3242.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) D. Crich, D. Grant, V. Krishnamurthy, M. Patel, Acc. Chem. Res. 2007, 40, 453.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) J. M. Pedersen, W. R. Bowman, M. R. J. Elsegood, A. J. Fletcher, P. J. Lovell, J. Org. Chem. 2005, 70, 10615.
         | Crossref | GoogleScholarGoogle Scholar |