Brønsted Acid-Mediated Radical Processes in Organic Synthesis
Thomas P. Nicholls A , Luke C. Henderson B C D and Alex C. Bissember A DA School of Physical Sciences – Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia.
B Strategic Research Centre for Chemistry and Biotechnology, Deakin University, Pigdons Road, Geelong, Vic. 3216, Australia.
C Institute for Frontier Materials, Deakin University, Pigdons Road, Geelong, Vic. 3216, Australia.
D Corresponding authors. Email: luke.henderson@deakin.edu.au; alex.bissember@utas.edu.au
Australian Journal of Chemistry 68(12) 1791-1795 https://doi.org/10.1071/CH15389
Submitted: 30 June 2015 Accepted: 10 August 2015 Published: 9 September 2015
Abstract
This highlight focuses on recent applications of Brønsted acid-mediated radical processes across a range of reaction manifolds, including transition metal-based catalysis, photochemistry, and polymer science. A brief overview of significant research developments in the area and a discussion of the key mechanistic features of notable transformations are provided.
References
[1] For recent and comprehensive reviews on radical chemistry see, for example: (a) Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012 (Wiley-VCH: Weinheim).(b) Radicals in Synthesis II (Ed. A. Gansäuer) 2006, Topics in Current Chemistry Vol. 264 (Springer: Berlin).
(c) S. Z. Zard, Radical Reactions in Organic Synthesis 2003 (Oxford University Press: Oxford).
(d) Radicals in Organic Synthesis (Eds P. Renaud, M. P. Sibi) 2001, Vols 1 and 2 (Wiley-VCH: Weinheim).
[2] (a) The well-established Minisci reaction, which features the reaction of nucleophilic carbon-centred radicals with protonated aromatic heterocycles under acidic conditions, is a notable exception. For reviews of the Minisci reaction see, for example: (a) F. Minisci, Synthesis 1973, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXotlCmsQ%3D%3D&md5=a2ddf978758ae58d294644a9681f9d3eCAS |
(b) F. Minisci, E. Vismara, F. Fontana, Heterocycles 1989, 28, 489.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) For reviews on visible light photoredox catalysis published since 2012, see: (a) J. W. Tucker, C. R. J. Stephenson, J. Org. Chem. 2012, 77, 1617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVygsA%3D%3D&md5=864562f502dbd7276c1f836bcb842b17CAS | 22283525PubMed |
(b) J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Maity, N. Zheng, Synlett 2012, 23, 1851.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Shi, W. Xia, Chem. Soc. Rev. 2012, 41, 7687.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Reckenthäler, A. G. Griesbeck, Adv. Synth. Catal. 2013, 355, 2727.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. Koike, M. Akita, Synlett 2013, 24, 2492.
| Crossref | GoogleScholarGoogle Scholar |
(h) D. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176.
| Crossref | GoogleScholarGoogle Scholar |
(i) J. W. Beatty, C. R. J. Stephenson, Acc. Chem. Res. 2015, 48, 1474.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. A. Ischay, M. E. Ansovino, J. Du, T. P. Yoon, J. Am. Chem. Soc. 2008, 130, 12886.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVymtLvL&md5=66caa124db6a6f17eb6aacbaca6e53eaCAS | 18767798PubMed |
(b) J. Du, T. P. Yoon, J. Am. Chem. Soc. 2009, 131, 14604.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. Du, L. R. Espelt, I. A. Guzei, T. P. Yoon, Chem. Sci. 2011, 2, 2115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isrrF&md5=3c3415874d6bd5f12f3505851ef623bfCAS | 22121471PubMed |
[6] L. R. Espelt, E. M. Wiensch, T. P. Yoon, J. Org. Chem. 2013, 78, 4107.
| Crossref | GoogleScholarGoogle Scholar |
[7] P. Kohls, D. Jadhav, G. Pandey, O. Reiser, Org. Lett. 2012, 14, 672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVyhtQ%3D%3D&md5=07d2eb61a767ed4e3dd95cfb0ac01fc8CAS | 22260623PubMed |
[8] (a) For example of Brønsted acid-mediated photoredox-catalysed processes utilising a proton-coupled electron transfer strategy see: (a) K. T. Tarantino, P. Liu, R. R. Knowles, J. Am. Chem. Soc. 2013, 135, 10022.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFamtLw%3D&md5=ed32d67eee0573464dd1ee11b9d0e168CAS | 23796403PubMed |
(b) L. J. Rono, H. G. Yayla, D. Y. Wang, M. F. Armstrong, R. R. Knowles, J. Am. Chem. Soc. 2013, 135, 17735.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) See, for example: (a) R. Koller, Q. Huchet, P. Battaglia, J. M. Welch, A. Togni, Chem. Commun. 2009, 5993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ahu7vE&md5=728561a09ef2bed8ad506f5362c513f5CAS |
(b) V. Matoušek, E. Pietrasiak, R. Schwenk, A. Togni, J. Org. Chem. 2013, 78, 6763.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Matoušek, E. Pietrasiak, L. Sigrist, B. Czarniecki, A. Togni, Eur. J. Org. Chem. 2014, 2014, 3087.
| Crossref | GoogleScholarGoogle Scholar |
[10] P. Yu, J.-S. Lin, L. Li, S.-C. Zheng, Y.-P. Xiong, L.-J. Zhao, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2014, 53, 11890.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2nurbI&md5=8cdb66e7ddad7b70af4ba974deedfc1cCAS |
[11] H. B. Zhang, Y. Wang, Y. Gu, P. F. Xu, RSC Adv. 2014, 4, 27796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgtrrF&md5=a9faed8df25212a20d7360bfabc922a0CAS |
[12] (a) C.-H. Jun, E.-A. Jo, J.-W. Park, Eur. J. Org. Chem. 2007, 2007, 1869.
| Crossref | GoogleScholarGoogle Scholar |
(b) B. Ni, Q. Zhang, S. Garre, A. D. Headley, Adv. Synth. Catal. 2009, 351, 875.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Chudasama, J. M. Ahern, D. V. Dhokia, R. J. Fitzmaurice, S. Caddick, Chem. Commun. 2011, 47, 3269.
| Crossref | GoogleScholarGoogle Scholar |
[13] Á. Pintér, A. Sud, D. Sureshkumar, M. Klussmann, Angew. Chem. Int. Ed. 2010, 49, 5004.
| Crossref | GoogleScholarGoogle Scholar |
[14] B. Schweitzer-Chaput, A. Sud, Á. Pintér, S. Dehn, P. Schulze, M. Klussmann, Angew. Chem. Int. Ed. 2013, 52, 13228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Kqs7rF&md5=cf248eb7c5d1300cd4551197823a7db3CAS |
[15] B. Schweitzer-Chaput, J. Demaerel, H. Engler, M. Klussmann, Angew. Chem. Int. Ed. 2014, 53, 8737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVersLk%3D&md5=a4380f4e1762f244338fc90a01e507fbCAS |
[16] R. Luo, Y. Chen, A. Sen, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVehtbzE&md5=04efc4fdf539cec57cc67d186e7cf526CAS |
[17] C. D. Eisenbach, B. Sperlich, Macromolecules 1996, 29, 7748.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCjs78%3D&md5=5442e110fa537e9b11106afdba39dffcCAS |
[18] C. D. Eisenbach, W. Lieberth, B. Sperlich, Angew. Makromol. Chem. 1994, 223, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislKlsbg%3D&md5=7a43ee70d7d1f455572e139d14f3220dCAS |