Lactic Acid Determination in Human Plasma Using Ultrasound-Assisted Emulsification Microextraction Followed by Gas Chromatography
Parvin Shahdousti A , Rezvan Shojaee A , Mohammad Aghamohammadi A B and Behrang Harooni AA Department of Chemistry, Boroujerd Branch, Islamic Azad University, PO Box 6915136111, Boroujerd, Iran.
B Corresponding author. Email: Aghamo_m@yahoo.com
Australian Journal of Chemistry 69(4) 451-457 https://doi.org/10.1071/CH15346
Submitted: 13 June 2015 Accepted: 2 September 2015 Published: 9 October 2015
Abstract
A rapid, sensitive, and accurate analytical method was developed for determination of lactic acid (LA) in human plasma to monitor lactic acidosis. This method was based on an ultrasound-assisted emulsification microextraction (USAEME) method followed by gas chromatography with flame ionization detection (GC–FID). Derivatization of LA was carried out by a low density alcoholic solvent which performs both as an extraction solvent and derivatization agent, simultaneously. In this procedure, 100 μL of binary mixtures of pentan-1-ol with toluene (70 : 30, v/v %) was slowly injected into a 10 mL acidified aqueous sample of LA placed into an ultrasonic water bath. The resulting emulsion was centrifuged and after derivatization, 2 μL of organic phase was analysed by GC–FID. The effective variables were evaluated to optimize the efficiency of USAEME. Under the optimum conditions, good linearity in the range of 0.06–7.77 mmol L–1 was obtained with a correlation coefficient (R2) of 0.991 and a limit of detection (LOD) of 0.04 mmol L–1 for water samples. The inter-day and intra-day repeatability of the proposed method in human plasma were evaluated in terms of the relative standard deviation (RSD %) and were found to be <10 %. The results revealed that the USAEME–GC–FID method can be applied successfully for determination of LA in human plasma samples with satisfactory accuracy and precision.
References
[1] A. L. Blomkalns, Lactate – A Marker for Sepsis and Trauma. Available at www.emcreg.org/publications/monographs/acep/2006/alb_acep2006.pdf (accessed 10 May 2015).[2] W. E. Huckabee, Am. J. Med. 1961, 30, 840.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF3c%2Fjs1Smsg%3D%3D&md5=f7e98d2acb6bb2bb8c92b3ca09bc77a6CAS | 13716482PubMed |
[3] J. B. Ewaschuk, G. A. Zello, J. M. Naylor, D. R. Brock, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2002, 781, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFCjsQ%3D%3D&md5=60e311514f05f5a1068691a4a8aa71faCAS |
[4] https://en.wikipedi.org/wiki/Lactic_acidosis (accessed 20 June 2014).
[5] A. Kratz, M. Ferraro, P. M. Sluss, N. Engl. J. Med. 2004, 351, 1549.
[6] http://www.medicinenet.com/script/main/art.asp?articlekey=20521 (accessed 10 May 2015).
[7] R. B. Brandt, S. A. Siegel, M. G. Waters, M. H. Bloch, Anal. Biochem. 1980, 102, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXptVejsQ%3D%3D&md5=a4ee3f4f37d667511f85bc5ae1194580CAS | 7356162PubMed |
[8] K. Fischer, A. Chodura, J. Kotalik, D. Bieniek, A. Kettrup, J. Chromatogr. A 1997, 770, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktF2ht70%3D&md5=4b118b9a851991cd2d9fc5280413d432CAS |
[9] L. Horspool, Q. McKellar, Biomed. Chromatogr. 1991, 5, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVKru78%3D&md5=24f913461abe60fb0e26c88ea25e54eeCAS | 1742550PubMed |
[10] G. Zhao, M. Nyman, J. Åke Jönsson, Biomed. Chromatogr. 2006, 20, 674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Krt74%3D&md5=80140ef217d9d4eedec65cdc2539a55aCAS | 16206138PubMed |
[11] M. Murase, Y. Kimura, Y. Nagata, J. Chromatogr. B: Biomed. Sci. Appl. 1995, 664, 415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFequ7g%3D&md5=19d4058c055dd0cba9a537ff79b066f7CAS |
[12] J. P. Amend, A. C. Amend, M. Valenza, Org. Geochem. 1998, 28, 699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvV2ltLc%3D&md5=55c737ece3e446cc05b3988d686d67eaCAS |
[13] E. Destandau, J. Vial, A. Jardy, M.-C. Hennion, D. Bonnet, P. Lancelin, J. Chromatogr. A 2005, 1088, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFSht74%3D&md5=bb96d30ee4d2332208b0870fcfdb3a2fCAS | 16130732PubMed |
[14] G. Cevasco, A. M. Piatek, C. Scapolla, S. Thea, J. Chromatogr. A 2011, 1218, 787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVahug%3D%3D&md5=5a253eda5efd1bee2338917beb2a5be6CAS | 21215409PubMed |
[15] M. Arellano, P. Jomard, S. El Kaddouri, C. Roques, F. Nepveu, F. Couderc, J. Chromatogr. B: Biomed. Sci. Appl. 2000, 741, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislentL8%3D&md5=961a6aca936733c4027472d9cd962536CAS |
[16] V. Galli, N. Olmo, C. Barbas, J. Chromatogr. A 2000, 894, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntF2rur0%3D&md5=5549001bab1bc76331b046af48353c27CAS | 11100856PubMed |
[17] R. J. Fussell, D. V. McCalley, Analyst 1987, 112, 1213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltlaktb8%3D&md5=e50006149a612290ccb957e7d555f9e2CAS |
[18] A. Richardson, A. Calder, C. Stewart, A. Smith, Lett. Appl. Microbiol. 1989, 9, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjt1OrtA%3D%3D&md5=96b0117ff9764029fa6fdcf8d8ed8b46CAS |
[19] J. Regueiro, M. Llompart, C. Garcia-Jares, J. C. Garcia-Monteagudo, R. Cela, J. Chromatogr. A 2008, 1190, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFGiu7o%3D&md5=89669b4607984385361d671328459926CAS | 18359033PubMed |
[20] M. A. Farajzadeh, N. Nouri, P. Khorram, Trends Analyt. Chem. 2014, 55, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVGrsrk%3D&md5=2a2c4e66e46b0ba08f276bf249dc7b32CAS |
[21] M. L. Fein, E. M. Filachione, Jr, E. H. Harris, U.S. Patent 2710880 A 1955.
[22] A. Saleh, Y. Yamini, M. Faraji, M. Rezaee, M. Ghambarian, J. Chromatogr. A 2009, 1216, 6673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2rsLnL&md5=d61c859954651ca17299b342d180e81cCAS | 19674752PubMed |
[23] See Section 3, pp. 5–95, in CRC Handbook of Chemistry and Physics (Ed. W. M. Haynes) 2013 (CRC Press: Boca Raton, FL).
[24] S. De Baere, V. Eeckhaut, M. Steppe, C. De Maesschalk, P. De Backer, F. Van Immerseel, S. Croubels, J. Pharm. Biomed. Anal. 2013, 80, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVGlurc%3D&md5=4a40484b7cd4bcf0e9ab140f9b2f8dd2CAS | 23542733PubMed |
[25] M. Storton, J. Exarchakis, T. Waters, Z. Hao, B. Parker, M. Knapp, J. Sep. Sci. 2010, 33, 982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFCns7k%3D&md5=b8f3d19fdef59044a9b1721debebcc0cCAS | 20155748PubMed |
[26] Y. Huang, Y. Tian, Z. Zhang, C. Peng, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2012, 905, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWls7fJ&md5=aad317e2e313c64151f57fb787554dc8CAS |
[27] H. Henry, N. Marmy Conus, P. Steenhout, A. Béguin, O. Boulat, Biomed. Chromatogr. 2012, 26, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVWks74%3D&md5=77e223cc7be6df07fb48ec885cf32c58CAS | 21842515PubMed |
[28] L. Danc, R. Bodor, P. Troska, M. Horciciak, M. Masar, Electrophoresis 2014, 35, 2146.
| 1:CAS:528:DC%2BC2cXivFajurg%3D&md5=dc5b3f6845cf44f986ee87cf7f820e3aCAS | 24431209PubMed |
[29] P. Tuma, E. Samcová, K. Stulík, Anal. Chim. Acta 2011, 685, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2mtb3J&md5=100417b861758e0235aa926e7ac462a7CAS | 21168555PubMed |