Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Water-Soluble Copolypeptides with Oligo-Ethylene-Glycol and Benzyl Pendants: Synthesis, Characterization, and Thermoresponsive Properties

Yu Yang A , Yan Wu A , Ruirui Li A , Ying Ling A B and Haoyu Tang A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China.

B Corresponding authors. Email: htang@xtu.edu.cn; yingling0202@gmail.com

Australian Journal of Chemistry 69(1) 112-118 https://doi.org/10.1071/CH15276
Submitted: 15 May 2015  Accepted: 22 June 2015   Published: 24 July 2015

Abstract

A series of random copolypeptides, i.e. poly(γ-propyl-l-glutamate)-graft-(oligo-ethylene-glycol)-random-poly(γ-benzyl-l-glutamate)s (PPLG-g-OEG3-ran-PBLG) with similar main chain lengths and various compositions of OEG and benzyl pendants were synthesized in three steps, including ring-opening polymerization of γ-chloropropyl-l-glutamic acid-based N-carboxyanhydride (CPLG-NCA) and γ-benzyl-l-glutamic acid-based N-carboxyanhydride (BLG-NCA), nucleophilic substitution in the presence of NaN3, and copper-mediated alkyne–azide 1,3-dipolar cycloaddition. 1H NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography results confirmed the molecular structures of the resulting copolypeptides and characterized their molar masses, molar mass distributions, and the OEG/benzyl compositions. Fourier transform infrared spectroscopy and circular dichroism analysis revealed that PPLG-g-OEG3-ran-PBLG samples adopted α-helical conformations both in aqueous solution and solid state. Variable-temperature UV-visible spectroscopy revealed that PPLG-g-OEG3-ran-PBLG samples with high OEG molar content (x ≥ 0.57) possessed lower critical solution temperature-type phase transitions in water. The cloud point temperature, in the range of 22–53°C, can be readily obtained by controlling the OEG/benzyl composition.


References

[1]  V. Aseyev, H. Tenhu, F. Winnik, Adv. Polym. Sci. 2011, 242, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Olu73O&md5=106f849989295d2ea4cfbc9b5e750e38CAS |

[2]  A. P. Vogt, S. R. Gondi, B. S. Sumerlin, Aust. J. Chem. 2007, 60, 396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslCns78%3D&md5=0f2359f1c893f64466ce5e25ec4ae412CAS |

[3]  Y. Kohno, H. Ohno, Aust. J. Chem. 2012, 65, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFeltr0%3D&md5=4a8d73371597b8fe3d46e0ea05419befCAS |

[4]  Y. Kohno, Y. Deguchi, N. Inoue, H. Ohno, Aust. J. Chem. 2013, 66, 1393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKkurvJ&md5=fd4349a8aa79d9a722a8ac95abbbf14dCAS |

[5]  M. Motornov, Y. Roiter, I. Tokarev, S. Minko, Prog. Polym. Sci. 2010, 35, 174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotV2hug%3D%3D&md5=f50ddc1fd7fb4df2b9ad52a233e9715dCAS |

[6]  Z. Hu, Y. Chen, C. Wang, Y. Zheng, Y. Li, Nature 1998, 393, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1aiu7k%3D&md5=2aec4f4eb3e4153c947f7369ce512424CAS |

[7]  J. Kim, M. J. Serpe, L. A. Lyon, J. Am. Chem. Soc. 2004, 126, 9512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVSksbg%3D&md5=ac8aa63155c1b21656a508b1b8f86baeCAS | 15291534PubMed |

[8]  L. Liu, W. Li, K. Liu, J. Yan, G. Hu, A. Zhang, Macromolecules 2011, 44, 8614.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yqu7rO&md5=0a4010d2611982fe568e12f918e47501CAS |

[9]  D. A. Z. Wever, F. Picchioni, A. A. Broekhuis, Prog. Polym. Sci. 2011, 36, 1558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWktrs%3D&md5=a366b4fd9598084a05a9743b3a4677b7CAS |

[10]  D. A. Z. Wever, E. Riemsma, F. Picchioni, A. A. Broekhuis, Polymer 2013, 54, 5456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlagsrjP&md5=23049d0e2d7232917e97a343b135a588CAS |

[11]  D. A. Z. Wever, G. Ramalho, F. Picchioni, A. A. Broekhuis, J. Appl. Polym. Sci. 2014, 131, 39785.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. E. Smith, X. Xu, C. L. McCormick, Prog. Polym. Sci. 2010, 35, 45.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotV2gtw%3D%3D&md5=8d381c027c45fb4bfebcc592084fd030CAS |

[13]  S. Aoshima, S. Kanaoka, Adv. Polym. Sci. 2008, 210, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFaqsb4%3D&md5=6a7ea5c6d98fac0a701d1339c6c217daCAS |

[14]  C. Weber, R. Hoogenboom, U. S. Schubert, Prog. Polym. Sci. 2012, 37, 686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFWrurw%3D&md5=e98c86fa4f26e23adccf365b2e412631CAS |

[15]  E. S. Gil, S. M. Hudson, Prog. Polym. Sci. 2004, 29, 1173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1OksLo%3D&md5=65913bda8b0422f1d21f61e7999fac03CAS |

[16]  Z. M. O. Rzaev, S. Dinçer, E. Pişkin, Prog. Polym. Sci. 2007, 32, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFyrt7o%3D&md5=ddf8296ca7980e09f85285c79e371f9fCAS |

[17]  C. He, X. Zhuang, Z. Tang, H. Tian, X. Chen, Adv. Healthcare Mater. 2012, 1, 48.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1yrsr8%3D&md5=34fef7a31291313bda47de9da97e785eCAS |

[18]  J. Huang, A. Heise, Chem. Soc. Rev. 2013, 42, 7373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wisb7E&md5=dd077af652a6ba8e168c531163197ee4CAS | 23632820PubMed |

[19]  Y. Shen, X. Fu, W. Fu, Z. Li, Chem. Soc. Rev. 2015, 44, 612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2gsLzJ&md5=3a38806248e6cee7210185bd3466ba7dCAS | 25335988PubMed |

[20]  J. Ding, L. Zhao, D. Li, C. Xiao, X. Zhuang, X. Chen, Polym. Chem. 2013, 4, 3345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlajtb8%3D&md5=f18210e2bde74721debac93557d5f8a8CAS |

[21]  C. Chen, Z. Wang, Z. Li, Biomacromolecules 2011, 12, 2859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlyhur4%3D&md5=105cb731c30ee887c8af80f1372e5dc7CAS | 21718026PubMed |

[22]  X. Fu, Y. Shen, W. Fu, Z. Li, Macromolecules 2013, 46, 3753.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Orurw%3D&md5=1a35d1594aca648497529f074358b123CAS |

[23]  Y. Cheng, C. He, C. Xiao, J. Ding, X. Zhuang, X. Chen, Polym. Chem. 2011, 2, 2627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2ns7%2FM&md5=d37599a3f1b02a42023343f9074d602dCAS |

[24]  Y. Wu, Y. Deng, Q. Yuan, Y. Ling, H. Tang, J. Appl. Polym. Sci. 2014, 131, 41022.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  C. M. Chopko, E. L. Lowden, A. C. Engler, L. G. Griffith, P. T. Hammond, ACS Macro Lett. 2012, 1, 727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslaitrY%3D&md5=3ef1d7901c3958e59796f47e9c3b9f42CAS | 24883233PubMed |

[26]  A. Kapetanakis, A. Heise, Eur. Polym. J. 2015, in press.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  W. H. Daly, D. Poché, Tetrahedron Lett. 1988, 29, 5859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsFCgs7Y%3D&md5=8dc2b48862968bd2647ba6c1fff33d14CAS |

[28]  H. Tang, D. Zhang, Biomacromolecules 2010, 11, 1585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvF2jsrc%3D&md5=5dd4202d0ecf43e6ca12d1be023fe3b7CAS | 20465286PubMed |

[29]  Y. Deng, Q. Hu, Q. Yuan, Y. Wu, Y. Ling, H. Tang, Macromol. Rapid Commun. 2014, 35, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOhsLnK&md5=b1ac1b4ad6914e62fb2fabe683ecae96CAS | 24307218PubMed |

[30]  S. M. Kelly, T. J. Jess, N. C. Price, Biochim. Biophys. Acta 2005, 1751, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1Wnt7k%3D&md5=24a882925839b960dd8de561cee43786CAS | 16027053PubMed |

[31]  J. A. Morrow, M. L. Segall, S. Lund-Katz, M. C. Phillips, M. Knapp, B. Rupp, K. H. Weisgraber, Biochemistry 2000, 39, 11657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFeitrc%3D&md5=74d5995ebb8a8889b089d0f6407231acCAS | 10995233PubMed |

[32]  G. Floudas, P. Papadopoulos, H. A. Klok, G. W. M. Vandermeulen, J. Rodriguez-Hernandez, Macromolecules 2003, 36, 3673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFOqt7k%3D&md5=431d84a3ca4e73908b863dc8b81561feCAS |

[33]  P. Papadopoulos, G. Floudas, H. A. Klok, I. Schnell, T. Pakula, Biomacromolecules 2004, 5, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWmtLg%3D&md5=9aefec41e60631d131fdd9d7830cb7e7CAS | 14715012PubMed |

[34]  N. Berova, K. Nakanishi, R. W. Woody, in Circular Dichroism: Principles and Applications 2000 pp. 601 (VCH-Wiley, New York, NY).

[35]  P. Kujawa, V. Aseyev, H. Tenhu, F. M. Winnik, Macromolecules 2006, 39, 7686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKitb7F&md5=00af6193b3676ebdcff7b29ee202da6eCAS |

[36]  Z.-Y. Qiao, F.-S. Du, R. Zhang, D.-H. Liang, Z.-C. Li, Macromolecules 2010, 43, 6485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFeltrg%3D&md5=a2e1001a78faefeafd19c77d23c3bbaaCAS |