Immobilization of BiOBr/BiOI Hierarchical Microspheres on Fly Ash Cenospheres as Visible Light Photocatalysts
Li Lin A B , Ya Wang A , Manhong Huang A D and Donghui Chen A C DA School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
B School of Chemical and Environmental Engineering, Hunan City University, Yiyang 413000, China.
C Shanghai Institute of Technology, Shanghai 200235, China.
D Corresponding authors. Email: chendh@dhu.edu.cn; egghmh@163.com
Australian Journal of Chemistry 69(1) 119-125 https://doi.org/10.1071/CH15157
Submitted: 5 April 2015 Accepted: 22 June 2015 Published: 24 July 2015
Abstract
Three-dimensional (3D) BiOBr/BiOI hierarchical microspheres were successfully fabricated on the surface of fly ash cenospheres (FACs) via a facile one-pot solvothermal method for the first time. The as-prepared samples were characterized by XRD, SEM, energy-dispersive X-ray spectroscopy, UV–visible diffuse reflectance spectroscopy, and high-resolution transmission electron microscopy. The results indicated that the loaded hierarchical microspheres exhibited a uniform distribution, and some aggregation was observed. These well-dispersed hierarchical microspheres were composed of 2D nanosheets, which possess heterojunction structures. Based on the photodegradation tests examining the removal of rhodamine B from water under visible light irradiation (λ > 420 nm), the photocatalytic activity of BiOB/BiOI/FACs was superior to that of BiOBr/FACs and BiOI/FACs. A proposed mechanism for the enhanced photocatalytic activity displayed by BiOB/BiOI/FACs is discussed.
References
[1] L. L. Li, L. H. Ai, C. H. Zhang, J. Jiang, Nanoscale 2014, 6, 4627.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVWms7Y%3D&md5=fa17fc930da1145fc423d498d13cacc2CAS |
[2] Z. Y. Jiang, B. B. Huang, Z. Z. Lou, Z. Y. Wang, X. D. Meng, Y. Y. Liu, X. Y. Qin, X. Y. Zhang, Y. Dai, Dalton Trans. 2014, 43, 8170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFWhu7Y%3D&md5=8a18e30dcbf3d06fde821cca07d148a7CAS |
[3] C. W. Tan, G. Q. Zhu, M. Hojamberdiev, K. Okada, J. Liang, X. C. Luo, P. Liu, Y. Liu, Appl. Catal., B 2014, 152–153, 425.
| Crossref | GoogleScholarGoogle Scholar |
[4] L. Zhang, W. Z. Wang, S. M. Sun, Y. Y. Sun, E. P. Gao, Z. J. Zhang, Appl. Catal., B 2014, 148–149, 164.
| Crossref | GoogleScholarGoogle Scholar |
[5] L. Q. Ye, J. Y. Liu, Z. Jiang, T. Y. Peng, L. Zan, Appl. Catal., B 2014, 142–143, 1.
[6] J. Xu, L. Li, C. S. Guo, Y. Zhang, S. F. Wang, Chem. Eng. J. 2013, 221, 230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFCjsb4%3D&md5=e4e2b9a19f5c8a62b96d4476f31f2eeeCAS |
[7] D. Zhang, J. Li, Q. G. Wang, Q. S. Wu, J. Mater. Chem. A 2013, 1, 8622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyjur7P&md5=26e02366ff1e609b7230fc2cadf29e38CAS |
[8] L. Zhang, W. Z. Wang, S. M. Sun, Y. Y. Sun, E. P. Gao, Z. J. Zhang, Appl. Catal., B 2014, 148–149, 164.
| Crossref | GoogleScholarGoogle Scholar |
[9] Z. S. Liu, H. S. Ran, B. T. Wu, P. Z. Feng, Y. B. Zhu, Colloids Surf., A 2014, 452, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlyqur8%3D&md5=c7f0de13032eef22e1f60b410fde3b2bCAS |
[10] Z. S. Liu, B. T. Wu, J. N. Niu, X. Huang, Y. B. Zhu, Appl. Surf. Sci. 2014, 288, 369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGlsbjP&md5=dc2a37228a75ebeef90639e7f6d4255fCAS |
[11] C. Q. Xu, H. H. Wu, F. L. Gu, J. Hazard. Mater. 2014, 275, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12lsL8%3D&md5=9a29c613cfe9f2106a0f637cb563bc9cCAS |
[12] R. Li, C. M. Fan, X. C. Zhang, Y. W. Wang, Y. F. Wang, H. Zhang, Thin Solid Films 2014, 562, 506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnvFCitrc%3D&md5=ba97df64670f67e11e75ee658b3d4939CAS |
[13] Y. H. Ao, H. Tang, P. F. Wang, C. Wang, J. Hou, J. Qian, Composites, Part B 2014, 59, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGktrc%3D&md5=7903409c928f8314c9f8707ad5ff2329CAS |
[14] P. W. Huo, Z. Y. Lu, X. L. Liu, D. Wu, X. L. Liu, J. M. Pan, X. Gao, W. L. Guo, H. M. Li, Y. S. Yan, Chem. Eng. J. 2012, 189–190, 75.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Zhang, H. Cui, B. Wang, C. Li, J. P. Zhai, Q. Li, Chem. Eng. J. 2013, 223, 737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFGks74%3D&md5=73c6ce3f3e6e5d8b92171868fc040e06CAS |
[16] X. T. Xu, Q. Li, H. Cui, J. F. Pang, L. Sun, H. An, J. P. Zhai, Desalination 2011, 272, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVCku7s%3D&md5=be93d168dfedfa4d9ef5aca3545d189bCAS |
[17] Z. Y. Lu, P. W. Huo, Y. Y. Luo, X. L. Liu, D. Wu, X. Gao, C. X. Li, Y. S. Yan, J. Mol. Catal. A: Chem. 2013, 378, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOrtLfI&md5=140f0a47646c822d94e83c6ca57dcd3aCAS |
[18] Z.Y. Lu, Y.Y. Luo, M. He, P.W. Huo, T.T. Chen, W.D. Shi, Y.S. Yan, J.M. Pan, Z.F. Ma, S.Y. Yang, RSC Adv. 2013, 3, 18373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFals7bE&md5=4b34b6b95c94bc0bbb841eb142f84b13CAS |
[19] M. He, Z.Y. Lu, W.C. Zhou, T.T. Chen, W.D. Shi, G.B. Che, P.W. Huo, Z. Zhu, X.X. Zhao, Y.S. Yan, RSC Adv. 2014, 4, 60148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1GlsrjL&md5=021735f8c1db52c3fce2465383f18a05CAS |
[20] J. Zhang, B. Wang, C. Li, H. Cui, J. P. Zhai, Q. Li, J. Environ. Sci. 2014, 26, 1936.
| Crossref | GoogleScholarGoogle Scholar |
[21] B. Wang, Z. W. Yang, H. An, J. P. Zhai, Q. Li, H. Cui, Appl. Surf. Sci. 2015, 324, 817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFCnt73L&md5=1b8bb6ec8337ca8fe4f897ff97402590CAS |
[22] M. Ge, N. Zhu, Y. P. Zhao, J. Li, L. Liu, Ind. Eng. Chem. Res. 2012, 51, 5167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xktlalsbs%3D&md5=0752b84c07b924c82df9b223b525aff3CAS |
[23] P. W. Huo, Z. Y. Lu, X. L. Liu, X. L. Liu, X. Gao, J. M. Pan, D. Wu, J. Ying, H. M. Li, Y. S. Yan, Chem. Eng. J. 2012, 198–199, 73.
| Crossref | GoogleScholarGoogle Scholar |
[24] L. Lin, M. H. Huang, L. P. Long, Z. Sun, W. Zheng, D. H. Chen, Ceram. Int. 2014, 40, 11493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFarsbw%3D&md5=2d2296e55d3c3058fecc376818511b3dCAS |
[25] M. A. Butler, J. Appl. Phys. 1977, 48, 1914.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvFKrurg%3D&md5=6e7180e7a97f2ec76be930ed4cc7b68aCAS |
[26] G. Zhao, S. W. Liu, Q. F. Lu, F. X. Xu, H. Y. Sun, J. Alloys Compd. 2013, 578, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOitrfN&md5=63982c2d5f33f26ddefd51a0a6986007CAS |
[27] W. L. Huang, Q. Zhu, J. Comput. Chem. 2009, 30, 183.
| Crossref | GoogleScholarGoogle Scholar | 18566979PubMed |
[28] A. H. Nethercot, Phys. Rev. Lett. 1974, 33, 1088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlslylt7g%3D&md5=6663af16fe0e96c8dc7d433b8d491beeCAS |
[29] M. A. Butler, D. S. Ginley, J. Electrochem. Soc. 1978, 125, 228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFant78%3D&md5=c22cd026058c4c848c620af98601ec5eCAS |
[30] J. Jiang, X. Zhang, P. B. Sun, L. Z. Zhang, J. Phys. Chem. C 2011, 115, 20555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CqtbvK&md5=31591fb3ed6b7a322529ab0deb9f851eCAS |
[31] R. W. Matthews, J. Catal. 1988, 113, 549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1SrtLs%3D&md5=2c1e612730c625d8d42d92adcf1cfa61CAS |
[32] J. F. Ma, J. Zou, L. Y. Li, C. Yao, Y. Kong, B. Y. Cui, R. L. Zhu, D. L. Li, Appl. Catal., B 2014, 144, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WmtrzK&md5=9adfa3a259ae56e96bb26a900e854342CAS |
[33] J. Cao, B. Y. Xu, H. L. Lin, B. D. Luo, S. F. Chen, Chem. Eng. J. 2012, 185–186, 91.
| Crossref | GoogleScholarGoogle Scholar |
[34] W. D. Wang, F. Q. Huang, X. P. Lin, J. H. Yang, Catal. Commun. 2008, 9, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWns77O&md5=9db44515dc6a307ac101b9f0a0d7c992CAS |