Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Investigation of the Photophysical Properties of a Eu3+ Coordination Polymer Bearing an α-Nitrile Substituted β-Diketonate Ligand via Emission and Ultrafast Transient Absorption Spectroscopy

Brodie L. Reid A , Evan G. Moore B D , Brian W. Skelton C , Mark I. Ogden A D and Massimiliano Massi A D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, and Nanochemistry Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia.

B School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia.

C Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, WA 6009, Australia.

D Corresponding authors. Email: egmoore@uq.edu.au; m.ogden@curtin.edu.au; m.massi@curtin.edu.au

Australian Journal of Chemistry 68(9) 1392-1398 https://doi.org/10.1071/CH15253
Submitted: 7 May 2015  Accepted: 30 May 2015   Published: 4 August 2015

Abstract

Reaction of the β-diketone ligand, 2-cyano-1,3-phenyl-1,3-propandione (LH), with hydrated EuCl3 in the presence of 1,10-phenanthroline (Phen), results in the crystallisation of a one-dimensional Eu3+ coordination polymer of formulation [Eu(Phen)(L)3], formed by coordination of the nitrile group of an O,O′-bound ligand to a neighbouring metal centre. An investigation of the metal-centred emission of the polymer, both in the solid state and solution, revealed red emission characterised by relatively long-lived excited state lifetimes and high intrinsic quantum yields. However, analysis of the overall quantum yield and sensitisation efficiency reveals that ultrafast processes in the ligand potentially inhibit Eu3+ sensitisation. Further investigations into these processes using transient absorption spectroscopy suggest that substitution at the α-C position may significantly decrease sensitisation via the antenna effect.


References

[1]  J.-C. G. Bünzli, Acc. Chem. Res. 2006, 39, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34, 1048.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  K. Binnemans, J. Mater. Chem. 2009, 19, 448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2kuw%3D%3D&md5=f8e93a622962e0496b88fed71036a92fCAS |

[4]  J. P. Martins, P. Martín-Ramos, C. Coya, A. L. Alvarez, L. C. Pereira, R. Diaz, J. Martín-Gil, M. Ramos Silva, Mater. Chem. Phys. 2014, 147, 1157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyntLbI&md5=5e564a8c05fda9b2eb066306e2429416CAS |

[5]  J. P. Martins, P. Martín-Ramos, C. Coya, M. R. Silva, M. E. S. Eusebio, A. de Andrés, Á. L. Álvarez, J. Martín-Gil, J. Lumin. 2015, 159, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVKltL7M&md5=b9ef8fdc3bc91afe2cb95967eaff495cCAS |

[6]  A. de Bettencourt-Dias, Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials 2014 (John Wiley & Sons Ltd: Chichester).

[7]  S. I. Weissman, J. Chem. Phys. 1942, 10, 214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH38XitVWktg%3D%3D&md5=8775d25835cf79451235c310c8c8aeacCAS |

[8]  K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths (Eds J.-C. G. Bünzli, K. A. Schneider, V. K. Pecharsky) 2005, Vol. 35, pp. 107–272 (Elsevier: Amsterdam).

[9]  G. A. Crosby, R. E. Whan, J. Chem. Phys. 1960, 32, 614.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXnvVKjuw%3D%3D&md5=4588569bf79dbbfb2706eaf784acf820CAS |

[10]  G. A. Crosby, R. E. Whan, R. M. Alire, J. Chem. Phys. 1961, 34, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhsVWgsb4%3D&md5=ec27961f690cb261c89cea4e6bba9ed1CAS |

[11]  L. R. Melby, N. J. Rose, E. Abramson, J. C. Caris, J. Am. Chem. Soc. 1964, 86, 5117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXnt1Gl&md5=726ea63fa464479ee3d866ad8d6cf5fcCAS |

[12]  H. Bauer, J. Blanc, D. Ross, J. Am. Chem. Soc. 1964, 86, 5125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXitVCjtg%3D%3D&md5=186c3ce9d97b757ae8944b2f300546ceCAS |

[13]  L. G. Hubert-Pfalzgraf, N. Miele-Pajot, R. Papiernik, J. Vaissermann, J. Chem. Soc., Dalton Trans. 1999, 9, 4127.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  P. W. Roesky, G. Canseco-Melchor, A. Zulys, Chem. Commun. 2004, 738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFOjsbo%3D&md5=d44f77cf5e07804ce00dfa9bb26e5c85CAS |

[15]  P. C. Andrews, W. J. Gee, P. C. Junk, M. Massi, New J. Chem. 2013, 37, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVert7vF&md5=01e3e9a2a9759c1ea4653ee718b48cdaCAS |

[16]  P. C. Andrews, D. H. Brown, B. H. Fraser, N. T. Gorham, P. C. Junk, M. Massi, T. G. St Pierre, B. W. Skelton, R. C. Woodward, Dalton Trans. 2010, 39, 11227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqur7J&md5=42da259cd639fcb8a5d6f8fc10339de5CAS | 20976346PubMed |

[17]  R. H. C. Tan, M. Motevalli, I. Abrahams, P. B. Wyatt, W. P. Gillin, J. Phys. Chem. B 2006, 110, 24476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2itL3J&md5=c6308ac1f45fc2161c76f1e9a2baf969CAS |

[18]  M. Ismail, S. J. Lyle, J. E. Newbery, J. Inorg. Nucl. Chem. 1969, 31, 2091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXks1Krtr8%3D&md5=b19d366c165e92bc1ce243c23afa541fCAS |

[19]  B. L. Reid, S. Stagni, J. M. Malicka, M. Cocchi, G. S. Hanan, M. I. Ogden, M. Massi, Chem. Commun. 2014, 50, 11580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlahu7nE&md5=a6c7ee663be1251d69c8774662b73488CAS |

[20]  C. Merkens, U. Englert, Dalton Trans. 2012, 41, 4664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFertb4%3D&md5=4727b6e207e1697e1eafb3bdf7a65c18CAS | 22382363PubMed |

[21]  G. I. Roshchupkina, Y. V. Gatilov, T. V. Rybalova, V. A. Reznikov, Eur. J. Org. Chem. 2004, 1765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1Gkt70%3D&md5=77ca74b1ce1c7dc8abac42856ef09158CAS |

[22]  M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, SHAPE ver. 2.1 2013 (Electronic Structure Group, University of Barcelona: Barcelona). Available at http://www.ee.ub.es/index.php/news-ee/575-shape-available

[23]  A. Ruiz-Martínez, D. Casanova, S. Alvarez, Chem. – Eur. J. 2008, 14, 1291.
         | Crossref | GoogleScholarGoogle Scholar | 18000919PubMed |

[24]  N. Armaroli, L. De Cola, V. Balzani, J.-P. Sauvage, C. O. Dietrich-Buchecker, J.-M. Kern, J. Chem. Soc., Faraday Trans. 1992, 88, 553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFerur4%3D&md5=71485b50c7bc32707110ab07f784e118CAS |

[25]  J.-C. G. Bünzli, S. V. Eliseeva, in Comprehensive Inorganic Chemistry II (Eds J. Reedijk, K. Poeppelmeier) 2013, pp. 339–398 (Elsevier: Amsterdam).

[26]  S. Cotton, Lanthanide and Actinide Chemistry 2006 (John Wiley & Sons, Ltd: Chichester).

[27]  J.-G. Bünzli, E. Moret, V. Foiret, K. J. Schenk, W. Mingzhao, L. Jin, J. Alloys Compd. 1994, 207, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. H. V. Werts, R. T. F. Jukes, J. W. Verhoeven, Phys. Chem. Chem. Phys. 2002, 4, 1542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVKmtL0%3D&md5=26b129055c72a39e808ac8f50fb4a90cCAS |

[29]  A. Zaïm, S. V. Eliseeva, L. Guénée, H. Nozary, S. Petoud, C. Piguet, Chem. – Eur. J. 2014, 20, 12172.
         | Crossref | GoogleScholarGoogle Scholar | 25099883PubMed |

[30]  L. Poisson, P. Roubin, S. Coussan, B. Soep, J. M. Mestdagh, J. Am. Chem. Soc. 2008, 130, 2974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFegtrc%3D&md5=b00c0437494fd82b365880f2aa9a4339CAS | 18281982PubMed |

[31]  P. K. Verma, A. Steinbacher, F. Koch, P. Nuernberger, T. Brixner, Phys. Chem. Chem. Phys. 2015, 17, 8459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlOlsL0%3D&md5=8f3e4d84da744aaaf06e3cb4de781c87CAS | 25655027PubMed |

[32]  C. Paris, V. Lhiaubet-Vallet, O. Jiménez, C. Trullas, M. Á. Miranda, Photochem. Photobiol. 2009, 85, 178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislams7Y%3D&md5=65056077229ae354780560eb67355460CAS | 18673327PubMed |

[33]  S. Tobita, M. Arakawa, I. Tanaka, J. Phys. Chem. 1984, 88, 2697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktFCgsbg%3D&md5=5c19cbac061d35c80bf4d8b7a30369e1CAS |

[34]  L. Ma, L. Yuan, C. Xu, G. Li, M. Tao, W. Zhang, Synthesis 2013, 45, 45.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFertb8%3D&md5=a10e7fbfa25e4c52b6c45b2af5bcb08cCAS |

[35]  G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktFamsL4%3D&md5=30a490fa1f12e84e704e1726246cc5b0CAS |

[36]  K. Nakamaru, Bull. Chem. Soc. Jpn. 1982, 55, 2697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmtVOitLs%3D&md5=1bf0f85e2a8e0a6961718a05cf48c375CAS |

[37]  N. M. Shavaleev, S. V. Eliseeva, R. Scopelliti, J.-C. G. Bünzli, Inorg. Chem. 2014, 53, 5171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1Cgt7Y%3D&md5=e433f66ff55dfd78743b5318f1b8bcaaCAS | 24807159PubMed |

[38]  N. M. Shavaleev, S. V. Eliseeva, R. Scopelliti, J. C. G. Bünzli, Chem. – Eur. J. 2009, 15, 10790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymtLzE&md5=c1f93620d8379374639df8eab70e2444CAS | 19760733PubMed |

[39]  G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=59f548f8f29686b585f885edea91b42eCAS |