Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Fabrication of TiO2/Ag/Ag2O Nanoparticles to Enhance the Photocatalytic Activity of Degussa P25 Titania

Safyan A. Khan A , Shahid Ali A B , Manzar Sohail A D , Mohamed A. Morsy B and Zain H. Yamani A C
+ Author Affiliations
- Author Affiliations

A Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

B Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

C Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

D Corresponding author. Email: manzarsohail@kfupm.edu.sa

Australian Journal of Chemistry 69(1) 41-46 https://doi.org/10.1071/CH15250
Submitted: 6 May 2015  Accepted: 5 June 2015   Published: 15 July 2015

Abstract

A simple chemical reduction approach was used to synthesize Ag nanoparticles (NPs) over a reputed photocatalyst, Degussa P25 (TiO2). Silver doping extended the P25 absorption wavelength from the ultraviolet to the visible region. The synthesized silver NPs (Ag NPs) were of spherical shape and had an average size of ~4.6 nm. In the next stage, Ag NPs were partially oxidized by treatment with hydrogen peroxide. The resulting P25/Ag/Ag2O nanocomposites were characterized by X-ray powder diffraction, transmission electron microscopy, energy dispersive X-ray analysis, Brunauer–Emmett–Teller analysis, and UV-visible spectroscopy. The photocatalytic activities of the P25, P25/Ag, and P25/Ag/Ag2O catalysts were investigated for the degradation of non-biodegradable dyes, methylene blue and rhodamine 6G. The P25/Ag/Ag2O nanocomposite exhibited better photodegradation activity than P25, as well as the commonly used Ag3PO4, under visible light irradiation.


References

[1]  M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes, Nature 2008, 452, 301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFCns7s%3D&md5=7b51b8e172f6af63cf40dc20383a926aCAS | 18354474PubMed |

[2]     (a) C. Yu, W. Zhou, G. Li, R. Jin , in Green Technologies for the Environment (Eds S. O. Obare, R. Luque) 2014, Vol. 1186, Ch. 8, pp. 139–160 (American Chemical Society: Washington, D.C.).
      (b) C. Sun, C. Chen, W. Ma, J. Zhao, Phys. Chem. Chem. Phys. 2011, 13, 1957.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. C. Colmenares, R. Luque, J. M. Campelo, F. Colmenares, Z. Karpiński, A. A. Romero, Materials 2009, 2, 2228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOnu73K&md5=ba9284eb5f86e86947bccc722b2954a1CAS |

[4]  M. Bellardita, V. Loddo, A. Mele, W. Panzeri, F. Parrino, I. Pibiri, L. Palmisano, RSC Adv. 2014, 4, 40859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVyhu7vI&md5=77925e3a1b319165e8e525fbb78da8b7CAS |

[5]  S. G. Kumar, K. S. R. K. Rao, RSC Adv. 2015, 5, 3306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOmsbvM&md5=cf19d10b05cf377bed2124f773e16f8dCAS |

[6]  (a) R. A. Carcel, L. Andronic, A. Duta, J. Nanosci. Nanotechnol. 2011, 11, 9095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1altLY%3D&md5=f771c5e246d12648453f338c4c27d781CAS | 22400308PubMed |
      (b) A. Tanaka, K. Hashimoto, H. Kominami, J. Am. Chem. Soc. 2014, 136, 586.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Anandan, M. Miyauchi, Chem. Commun. 2012, 48, 4323.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J.-K. Liu, C.-X. Luo, J.-D. Wang, X.-H. Yang, X.-H. Zhong, CrystEngComm 2012, 14, 8714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKntr%2FP&md5=3ec2e6a269e207c7701674529433c499CAS |

[8]  (a) A. A. Ismail, D. W. Bahnemann, Green Chem. 2011, 13, 428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gjtb4%3D&md5=884d4701dfc48c880c354c259930e94bCAS |
      (b) J. Yu, J. Xiong, B. Cheng, S. Liu, Appl. Catal. B 2005, 60, 211.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) O. Akhavan, J. Colloid Interface Sci. 2009, 336, 117.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Teng, X. Li, Q. Zhao, G. Chen, J. Mater. Chem. A 2013, 1, 9060.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. T. Johra, W.-G. Jung, Appl. Catal. A 2015, 491, 52.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) S. Gupta, M. Tripathi, Chin. Sci. Bull. 2011, 56, 1639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyhurs%3D&md5=0b9f80988f43d1f585ba01d1e516905bCAS |
      (b) Z. Hai, N. E. Kolli, J. Chen, H. Remita, New J. Chem. 2014, 38, 5279.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Ohtani, O. O. Prieto-Mahaney, D. Li, R. Abe, J. Photochem. Photobiol. Chem. 2010, 216, 179.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. Zhang, Y. Zhang, Y. Lei, C. Pan, Catal. Sci. Technol. 2011, 1, 273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFygurw%3D&md5=4af3454aae8e88d82e0b61b2fd6e4299CAS |

[11]  K. Nakata, A. Fujishima, J. Photochem. Photobiol. Chem. 2012, 13, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWqt78%3D&md5=89a9aeb8bbe20e035b8afa249cc4869aCAS |

[12]  (a) K. Y. Jung, S. B. Park, J. Photochem. Photobiol. Chem. 1999, 127, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlSlt7o%3D&md5=441968eddaf5dd38c8b952cbbdf358a4CAS |
      (b) S. Yin, H. Hasegawa, D. Maeda, M. Ishitsuka, T. Sato, J. Photochem. Photobiol. Chem. 2004, 163, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) Z. Zhang, C.-C. Wang, R. Zakaria, J. Y. Ying, J. Phys. Chem. B 1998, 102, 10871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslOhs7g%3D&md5=c0c3ecb6ab85d6bc0642548e725b0c86CAS |
      (b) C.-C. Wang, Z. Zhang, J. Y. Ying, Nanostruct. Mater. 1997, 9, 583.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) V. K. Sharma, R. A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 2009, 145, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKntLbF&md5=a4358464cd96091dd73a770d7624fad6CAS | 18945421PubMed |
      (b) M. K. Seery, R. George, P. Floris, S. C. Pillai, J. Photochem. Photobiol. Chem. 2007, 189, 258.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. M. Khan, S. A. Ansari, M. I. Amal, J. Lee, M. H. Cho, Nanoscale 2013, 5, 4427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFOrtbs%3D&md5=f52d52437e2d07e88e78d4a8ec08f947CAS | 23579384PubMed |

[16]  M. A. Aziz, M. Oyama, J. Nanopart. Res. 2013, 15, 1618.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  N. C. Jeong, C. Prasittichai, J. T. Hupp, Langmuir 2011, 27, 14609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeqtbbO&md5=bb91afb9fb6da13bf650ef7472f4ddd4CAS | 21992773PubMed |

[18]  (a) K. Page, R. G. Palgrave, I. P. Parkin, M. Wilson, S. L. P. Savin, A. V. Chadwick, J. Mater. Chem. A 2007, 17, 95.
         | 1:CAS:528:DC%2BD28Xht12qtb7O&md5=89e229f7b03755a97082e3e8f1c0c8c3CAS |
      (b) N. Sobana, M. Muruganadham, M. Swaminathan, J. Mol. Catal. Chem. 2006, 258, 124.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Rengaraj, X. Z. Li, J. Mol. Catal. Chem. 2006, 243, 60.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Li, J. H. Hsieh, J. C. Cheng, C. C. Huang, Thin Solid Films 2014, 570, Part B, 436.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  G. R. Brewster, Clays Clay Miner. 1980, 28, 303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmt1ehs7Y%3D&md5=6f91d4c70a58c9f126633115aed12c32CAS |

[20]  P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, J. Am. Chem. Soc. 2004, 126, 3868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslajtLw%3D&md5=7d4edcd05b21d5087490fae52b60f93bCAS | 15038741PubMed |

[21]  S. Valencia, J. M. Marín, G. Restrepo, Open Mater. Sci. J. 2009, 4, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S. B. Cronin, Nano Lett. 2011, 11, 1111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFWhsr0%3D&md5=ca08db5b3d3afea5ff2c8b0543663741CAS | 21319840PubMed |

[23]  (a) J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, A. Fernández, Appl. Catal. B 1997, 13, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlKnurg%3D&md5=37e959cd0545d6f0185d39543df9a9d7CAS |
      (b) E. Stathatos, P. Lianos, P. Falaras, A. Siokou, Langmuir 2000, 16, 2398.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  H. Zangeneh, A. A. L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa, J. Ind. Eng. Chem. 2015, 26, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVygt7zF&md5=2a4094df881de446b59568f6e77be1c8CAS |

[25]  (a) J. Huang, H. Ren, X. Liu, X. Li, J.-J. Shim, Superlattices Microstruct. 2015, 81, 16.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFSisbY%3D&md5=e6e059229d270c95e47e6897c1d0b62aCAS |
      (b) Z. Li, J. Wang, K. Zhu, F. Ma, A. Meng, Mater. Lett. 2015, 145, 167.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Wang, Y. Wang, Y. Chen, C. Yin, Y. Zuo, L.-F. Cui, Mater. Lett. 2015, 139, 70.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  (a) D. He, S. Garg, T. D. Waite, Langmuir 2012, 28, 10266.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlOgurY%3D&md5=bebfaacff2c287aa1091764a9d41ebbaCAS | 22616806PubMed |
      (b) C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P. K.-H. Tam, J.-F. Chiu, C.-M. Che, J. Biol. Inorg. Chem. 2007, 12, 527.
         | Crossref | GoogleScholarGoogle Scholar |