Diverse Structures and Physicochemical Properties of Four Zinc–Tripyridyltriazole Coordination Polymers Regulated by Counter-Ions
Xi Wang A and Ya-Mei Guo A BA Department of Chemistry, Tianjin University, Tianjin 300072, China.
B Corresponding author. Email: ymguo@tju.edu.cn
Australian Journal of Chemistry 69(1) 33-40 https://doi.org/10.1071/CH15180
Submitted: 14 April 2015 Accepted: 2 June 2015 Published: 9 July 2015
Abstract
Four distinct ZnII coordination polymers [Zn(L5)Cl2]n (1), [Zn(L5)I2]n (2), {[Zn(L5)(N3)2](H2O)2}n (3), and {[Zn(L5)2(H2O)](ClO4)2(CH3OH)}n (4) were prepared by assembling a multidentate tripyridyltriazole building block 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole (L5) with different ZnII salts. Compounds 1, 2 and 4 display distinguishing 1D chain-like coordination patterns whereas 3 reveals a 2D uninodal four-connected network, which can be well regulated by different counter-ions. Further, the building tecton L5 exhibits multiple conformations in these structures. The structural diversity reveals that the synergistic modulation of counter-ions and the adaptable conformations of the organic linker play a critical role in the structural construction. Solid-state properties including thermal stability and fluorescence were investigated as well.
References
[1] (a) H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature 2004, 427, 523.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFWguw%3D%3D&md5=a73c213a4a30d5395cf68cd98c3a676dCAS | 14765190PubMed |
(b) J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 2014, 43, 6116.
| Crossref | GoogleScholarGoogle Scholar |
(d) C.-S. Liu, X.-G. Yang, M. Hu, M. Du, S.-M. Fang, Chem. Commun. 2012, 7459.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Du, C.-P. Li, C.-S. Liu, S.-M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7Y%3D&md5=47a1c08dd4b34bdb91e1821a53745598CAS | 19384436PubMed |
(b) J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) L. Basabe-Desmonts, D. N. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 2007, 36, 993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVShtbk%3D&md5=3ab74cc94042a8a944bedf9162f59679CAS | 17534482PubMed |
(b) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7s%3D&md5=80d0f6ef8ca59d59953f58b85faae4d2CAS | 19384442PubMed |
(b) Y.-F. Zeng, X. Hu, F.-C. Liu, X.-H. Bu, Chem. Soc. Rev. 2009, 38, 469.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. Yoon, K. Suh, S. Natarajan, K. Kim, Angew. Chem. Int. Ed. 2013, 52, 2688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyltrc%3D&md5=86eb342207b0b5735aae21b2fbe93ae6CAS |
(b) S. Horike, D. Umeyama, S. Kitagawa, Acc. Chem. Res. 2013, 46, 2376.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Ramaswamy, N. E. Wong, G. K. H. Shimizu, Chem. Soc. Rev. 2014, 43, 5913.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) A. Schoedel, W. Boyette, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2013, 135, 14016.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWjs7jE&md5=c90b998acbb0916858cca5ec487f329aCAS | 24015811PubMed |
(b) V. Guillerm, D. Kim, J. F. Eubank, R. Luebke, X. Liu, K. Adil, M. S. Lah, M. Eddaoudi, Chem. Soc. Rev. 2014, 43, 6141.
| Crossref | GoogleScholarGoogle Scholar |
[7] K. Kasai, M. Fujita, Chem. – Eur. J. 2007, 13, 3089.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1art7w%3D&md5=6be621bf57b73116012ceaba700dfc91CAS | 17201000PubMed |
[8] (a) Y.-Y. Yang, W. Guo, M. Du, Inorg. Chem. Commun. 2010, 13, 1195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVantL7P&md5=8c3de8709f97184ff0737622ffb76cc3CAS |
(b) C.-P. Li, M. Du, Chem. Commun. 2011, 5958.
| Crossref | GoogleScholarGoogle Scholar |
(c) C.-P. Li, J.-M. Wu, M. Du, Chem. – Eur. J. 2012, 18, 12437.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) F.-J. Meng, H.-Q. Jia, N.-H. Hu, J.-W. Xu, Inorg. Chem. Commun. 2012, 21, 186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1ymtb8%3D&md5=e378b0c3fc6808ba2a7da752487c991fCAS |
(b) F.-P. Huang, Z.-M. Yang, P.-F. Yao, Q. Yu, J.-L. Tian, H.-D. Bian, S.-P. Yan, D.-Z. Liao, P. Cheng, CrystEngComm 2013, 15, 2657.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. Chen, X.-F. Wang, H.-M. Hu, J. Wang, R. An, F.-X. Dong, M.-L. Yang, G.-L. Xue, Polyhedron 2014, 81, 517.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) M. Dai, Z. Yang, C.-Y. Ni, H. Yu, Y. Chen, H.-X. Li, Z.-G. Ren, J.-P. Lang, Inorg. Chem. Commun. 2014, 40, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFehu7s%3D&md5=5c8757baa625b00724f081ddcf31d9e9CAS |
(b) L.-L. Liu, L. Liu, J.-J. Wang, Inorg. Chim. Acta 2013, 397, 75.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) H.-Y. Deng, J.-R. He, M. Pan, L. Li, C.-Y. Su, CrystEngComm 2009, 11, 909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyksLc%3D&md5=5ef805db003f7f6b134873514ab0d3a2CAS |
(b) W. Guo, Y.-Y. Yang, M. Du, Inorg. Chem. Commun. 2010, 13, 863.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Ma, L. Chen, M.-Y. Wu, S.-Q. Zhang, K.-C. Xiong, D. Han, F.-L. Jiang, M.-C. Hong, CrystEngComm 2013, 15, 911.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) W. Guo, A. Escuer, M. Tang, C.-H. Jiang, M. Du, Inorg. Chim. Acta 2013, 403, 142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1els7rE&md5=28c426f250a699a96cb67cbc88ff9a76CAS |
(b) C.-P. Li, J. Guo, M. Du, Inorg. Chem. Commun. 2013, 38, 70.
| Crossref | GoogleScholarGoogle Scholar |
(c) J.-H. Guo, W. Guo, X. Wang, M. Du, Inorg. Chem. Commun. 2012, 22, 77.
| Crossref | GoogleScholarGoogle Scholar |
(d) C.-P. Li, J. Chen, W. Guo, M. Du, J. Solid State Chem. 2015, 223, 95.
| Crossref | GoogleScholarGoogle Scholar |
[13] T. L. Hu, R. Q. Zou, J. R. Li, X. H. Bu, Dalton Trans. 2008, 1302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKjtLw%3D&md5=b7514819dc6070a5c080588392a08dd2CAS | 18305842PubMed |
[14] M. H. Klingele, S. Brooker, Eur. J. Org. Chem. 2004, 3422.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVKhtrg%3D&md5=b1f8da777fd950477d4c5857e443d206CAS |