Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Diverse Structures and Physicochemical Properties of Four Zinc–Tripyridyltriazole Coordination Polymers Regulated by Counter-Ions

Xi Wang A and Ya-Mei Guo A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Tianjin University, Tianjin 300072, China.

B Corresponding author. Email: ymguo@tju.edu.cn

Australian Journal of Chemistry 69(1) 33-40 https://doi.org/10.1071/CH15180
Submitted: 14 April 2015  Accepted: 2 June 2015   Published: 9 July 2015

Abstract

Four distinct ZnII coordination polymers [Zn(L5)Cl2]n (1), [Zn(L5)I2]n (2), {[Zn(L5)(N3)2](H2O)2}n (3), and {[Zn(L5)2(H2O)](ClO4)2(CH3OH)}n (4) were prepared by assembling a multidentate tripyridyltriazole building block 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole (L5) with different ZnII salts. Compounds 1, 2 and 4 display distinguishing 1D chain-like coordination patterns whereas 3 reveals a 2D uninodal four-connected network, which can be well regulated by different counter-ions. Further, the building tecton L5 exhibits multiple conformations in these structures. The structural diversity reveals that the synergistic modulation of counter-ions and the adaptable conformations of the organic linker play a critical role in the structural construction. Solid-state properties including thermal stability and fluorescence were investigated as well.


References

[1]  (a) H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature 2004, 427, 523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFWguw%3D%3D&md5=a73c213a4a30d5395cf68cd98c3a676dCAS | 14765190PubMed |
      (b) J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 2014, 43, 6116.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C.-S. Liu, X.-G. Yang, M. Hu, M. Du, S.-M. Fang, Chem. Commun. 2012, 7459.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Du, C.-P. Li, C.-S. Liu, S.-M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7Y%3D&md5=47a1c08dd4b34bdb91e1821a53745598CAS | 19384436PubMed |
      (b) J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) L. Basabe-Desmonts, D. N. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 2007, 36, 993.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVShtbk%3D&md5=3ab74cc94042a8a944bedf9162f59679CAS | 17534482PubMed |
      (b) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7s%3D&md5=80d0f6ef8ca59d59953f58b85faae4d2CAS | 19384442PubMed |
      (b) Y.-F. Zeng, X. Hu, F.-C. Liu, X.-H. Bu, Chem. Soc. Rev. 2009, 38, 469.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. Yoon, K. Suh, S. Natarajan, K. Kim, Angew. Chem. Int. Ed. 2013, 52, 2688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyltrc%3D&md5=86eb342207b0b5735aae21b2fbe93ae6CAS |
      (b) S. Horike, D. Umeyama, S. Kitagawa, Acc. Chem. Res. 2013, 46, 2376.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Ramaswamy, N. E. Wong, G. K. H. Shimizu, Chem. Soc. Rev. 2014, 43, 5913.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) A. Schoedel, W. Boyette, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2013, 135, 14016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWjs7jE&md5=c90b998acbb0916858cca5ec487f329aCAS | 24015811PubMed |
      (b) V. Guillerm, D. Kim, J. F. Eubank, R. Luebke, X. Liu, K. Adil, M. S. Lah, M. Eddaoudi, Chem. Soc. Rev. 2014, 43, 6141.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  K. Kasai, M. Fujita, Chem. – Eur. J. 2007, 13, 3089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1art7w%3D&md5=6be621bf57b73116012ceaba700dfc91CAS | 17201000PubMed |

[8]  (a) Y.-Y. Yang, W. Guo, M. Du, Inorg. Chem. Commun. 2010, 13, 1195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVantL7P&md5=8c3de8709f97184ff0737622ffb76cc3CAS |
      (b) C.-P. Li, M. Du, Chem. Commun. 2011, 5958.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C.-P. Li, J.-M. Wu, M. Du, Chem. – Eur. J. 2012, 18, 12437.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) F.-J. Meng, H.-Q. Jia, N.-H. Hu, J.-W. Xu, Inorg. Chem. Commun. 2012, 21, 186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1ymtb8%3D&md5=e378b0c3fc6808ba2a7da752487c991fCAS |
      (b) F.-P. Huang, Z.-M. Yang, P.-F. Yao, Q. Yu, J.-L. Tian, H.-D. Bian, S.-P. Yan, D.-Z. Liao, P. Cheng, CrystEngComm 2013, 15, 2657.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Q. Chen, X.-F. Wang, H.-M. Hu, J. Wang, R. An, F.-X. Dong, M.-L. Yang, G.-L. Xue, Polyhedron 2014, 81, 517.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) M. Dai, Z. Yang, C.-Y. Ni, H. Yu, Y. Chen, H.-X. Li, Z.-G. Ren, J.-P. Lang, Inorg. Chem. Commun. 2014, 40, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFehu7s%3D&md5=5c8757baa625b00724f081ddcf31d9e9CAS |
      (b) L.-L. Liu, L. Liu, J.-J. Wang, Inorg. Chim. Acta 2013, 397, 75.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) H.-Y. Deng, J.-R. He, M. Pan, L. Li, C.-Y. Su, CrystEngComm 2009, 11, 909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyksLc%3D&md5=5ef805db003f7f6b134873514ab0d3a2CAS |
      (b) W. Guo, Y.-Y. Yang, M. Du, Inorg. Chem. Commun. 2010, 13, 863.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Ma, L. Chen, M.-Y. Wu, S.-Q. Zhang, K.-C. Xiong, D. Han, F.-L. Jiang, M.-C. Hong, CrystEngComm 2013, 15, 911.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) W. Guo, A. Escuer, M. Tang, C.-H. Jiang, M. Du, Inorg. Chim. Acta 2013, 403, 142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1els7rE&md5=28c426f250a699a96cb67cbc88ff9a76CAS |
      (b) C.-P. Li, J. Guo, M. Du, Inorg. Chem. Commun. 2013, 38, 70.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-H. Guo, W. Guo, X. Wang, M. Du, Inorg. Chem. Commun. 2012, 22, 77.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C.-P. Li, J. Chen, W. Guo, M. Du, J. Solid State Chem. 2015, 223, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  T. L. Hu, R. Q. Zou, J. R. Li, X. H. Bu, Dalton Trans. 2008, 1302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKjtLw%3D&md5=b7514819dc6070a5c080588392a08dd2CAS | 18305842PubMed |

[14]  M. H. Klingele, S. Brooker, Eur. J. Org. Chem. 2004, 3422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVKhtrg%3D&md5=b1f8da777fd950477d4c5857e443d206CAS |