Enzymatic Digestion of Keratin for Preparing a pH-Sensitive Biopolymer Hydrogel
Tao Li A , Xiaochun Yin A , Wenzhong Zhai A , Yu-Feng He A and Rong-Min Wang A BA Key Laboratory Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
B Corresponding author. Email: wangrm@nwnu.edu.cn
Australian Journal of Chemistry 69(2) 191-197 https://doi.org/10.1071/CH15224
Submitted: 28 April 2015 Accepted: 8 July 2015 Published: 31 August 2015
Abstract
Keratin, a typical natural biopolymer, has been applied in the biomedical field due to its biocompatible, eco-friendly, and inexpensive characteristics. In this paper, pig hair keratin (PHK) was pre-treated and efficiently digested by enzyme to afford enzymatically digested pig hair keratin (E-PHK) with short polymer chains. Then, by using methacrylic acid (MAA), as a functional monomer, a novel keratin (E- PHK)-based biopolymer hydrogel (E-PHKPGel) was prepared via grafting copolymerization. It was characterized by Fourier transform infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis, and scanning electron microscopy. The swelling behaviours, salt sensitivity, and release behaviours of E-PHKPGel were also investigated. As a result, the enzymatic digestion method was found to improve the swelling and release properties of PHK. The release behaviours of pH-sensitive E-PHKPGel were controllable by adjustment of the pH value. For the small molecular model drug (rhodamine B), the cumulative release rate was 89 % in 12 h at pH 7.2. For the macromolecular model drug (bovine serum albumin), the cumulative release rate reached 70.7 % in 12 h at pH 7.2. In conclusion, a simple and efficient enzymatic digestion method to PHK has been found. E-PHKPGel is expected to be used in the biomedical field as a sustained drug carrier as well as a humid medicinal material in the clinical nursing field.
References
[1] C. Meier, M. E. Welland, Biomacromolecules 2011, 12, 3453.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSks73P&md5=1021a8f78ab6e3f8d0a8df621ef6dc59CAS | 21859156PubMed |
[2] T. Tanabe, A. Tachibana, K. Yamauchi, Recent Res. Dev. Protein Eng. 2001, 1, 247.
| 1:CAS:528:DC%2BD38XoslyhsLk%3D&md5=d00378ab8f44fda677249c66af0289f6CAS |
[3] J. R. Richter, R. C. de Guzman, O. K. Greengauz-Roberts, M. Van Dyke, Acta Biomater. 2012, 8, 274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjtL7J&md5=73b0282ab6d44bb57f6fbb8ddf3a5a93CAS | 21911088PubMed |
[4] X. C. Yin, F. Y. Li, Y. F. He, Y. Wang, R. M. Wang, Biomater. Sci. 2013, 1, 528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOmurc%3D&md5=20cec8c6bb474dcd84beae0fbae40978CAS |
[5] R. Nakata, Y. Osumi, S. Miyagawa, A. Tachibana, T. Tanabe, J. Biosci. Bioeng. 2015, 120, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXislGqsw%3D%3D&md5=25170f6939426101686e87d4be4a326bCAS | 25561327PubMed |
[6] R. Nakata, T. Akira, T. Tanabe, Mater. Sci. Eng., C 2014, 41, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsl2qsb0%3D&md5=5270ae271d9cde45bac9e1ed8d65bb52CAS |
[7] P. Ramnani, R. Singh, R. Gupta, Can. J. Microbiol. 2005, 51, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFCku7s%3D&md5=a418d706d6f6264a076bdb78ce1476f2CAS | 15920616PubMed |
[8] A. G. Kumar, S. Swarnalatha, S. Gayathri, N. Nagesh, G. Sekaran, J. Appl. Microbiol. 2008, 104, 411.
| 1:CAS:528:DC%2BD1cXisFSitbc%3D&md5=1485832d609e7e129f2555abcdff886dCAS | 17922821PubMed |
[9] P. Pillai, S. Mandge, G. Archana, Process Biochem. 2011, 46, 1110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFWjsb8%3D&md5=f57997d66b57a8e2c43efa8776ce543eCAS |
[10] G. G. Lee, P. R. Ferket, J. C. H. Shih, FASEB J. 1991, 59, 1312.
[11] J. C. H. Shih, Biodegradation and utilization of feather keratin: Proceedings of 1999 animal waste Management Symposium, North Carolina State University, Raleigh, 1999. pp. 165–171.
[12] W. Lo, J. Too, J. Wu, J. Biosci. Bioeng. 2012, 114, 640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVSmtbo%3D&md5=253740c0091f8f34a64426589fe81caeCAS | 22999356PubMed |
[13] A. W. Lipkowski, B. Gajkowska, A. Grabowska, K. Kurzepa, Polimery 2009, 54, 386.
| 1:CAS:528:DC%2BD1MXmsVGks7s%3D&md5=1c19e1630a6fff35df1a9dead10d303dCAS |
[14] J. R. Richter, R. C. de Guzman, O. K. Greengauz-Roberts, M. Van Dyke, Acta Biomater. 2012, 8, 274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjtL7J&md5=73b0282ab6d44bb57f6fbb8ddf3a5a93CAS | 21911088PubMed |
[15] A. Brandelli, D. J. Daroit, A. Riffel, Appl. Microbiol. Biotechnol. 2010, 85, 1735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqtbw%3D&md5=713b938c1b1b2f94e2d9e903d47d5f40CAS | 20039036PubMed |
[16] A. Riffel, D. J. Daroit, A. Brandelli, Nat. Biotechnol. 2011, 28, 153.
| 1:CAS:528:DC%2BC3MXhsFOrsrk%3D&md5=d69dffee4d37abc76e02d07e54fd0a32CAS |
[17] C. Yang, X. Song, C. Sun, M. Chen, Y. Xu, X. Liu, Z. Ni, J. Appl. Polym. Sci. 2006, 102, 4023.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVymurrN&md5=849f691fb0596730becc7380be737ba0CAS |
[18] K. Takahashi, H. Yamamoto, Y. Yokote, M. Hattori, Biosci., Biotechnol., Biochem. 2004, 68, 1875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlGru7o%3D&md5=f58d0b1737d3364484c5f59a45200553CAS |
[19] P. L. Nayak, S. Lenka, N. C. Pati, J. Appl. Polym. Sci. 1979, 23, 1345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtlyqs7c%3D&md5=9993eff4118e07b788d316510fe00a3eCAS |
[20] W. K. Kim, E. S. Lorenz, P. H. Patterson, Poult. Sci. 2002, 81, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislOisbg%3D&md5=181f82f39a69ce789b570587825fbb58CAS | 11885907PubMed |
[21] X. Gao, C. He, C. Xiao, X. Zhuang, X. Chen, Polymer 2013, 54, 1786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlaru70%3D&md5=a3451966e865e9ac49ac1d8c3c307f4cCAS |
[22] A. Vasconcelos, G. Freddi, A. Cavaco-Paulo, Biomacromolecules 2008, 9, 1299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFGnt7o%3D&md5=c7800be5241a89ee0004bb0945b98b32CAS | 18355027PubMed |
[23] A. Aluigi, M. Zoccola, C. Vineis, C. Tonin, F. Ferrero, M. Canetti, Int. J. Biol. Macromol. 2007, 41, 266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFKhs7k%3D&md5=bdd9cc91ebbe1690aad79fa8b9b045a5CAS | 17467791PubMed |
[24] J. Shao, J. Zheng, J. Liu, C. M. Carr, J. Appl. Polym. Sci. 2005, 96, 1999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFSqsLk%3D&md5=1e6b93e6b437ab348bdab3dcb612386eCAS |
[25] S. W. Ha, A. E. Tonelli, S. M. Hudson, Biomacromolecules 2005, 6, 1722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtl2isL4%3D&md5=e2d49b0b6b8620e0ec0e0bf576d2bed9CAS | 15877399PubMed |
[26] R. Barbucci, A. Magnani, M. Consumi, Macromolecules 2000, 33, 7475.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1Chtb8%3D&md5=6f756798cf20746b17bf1ba5eae77fa2CAS |
[27] R. Konradi, J. Rühe, Macromolecules 2005, 38, 4345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFahu70%3D&md5=3093911ed545c064e9759d6827bcbe75CAS |
[28] Y. Qiu, K. Park, Adv. Drug Delivery Rev. 2001, 53, 321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFyrtbg%3D&md5=4d2319cf013a8d01e69f4132c19fefb8CAS |
[29] C. He, S. W. Kim, D. S. Lee, J. Controlled Release 2008, 127, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVeqtbg%3D&md5=dd3e207ee6fa0b75735baa469fd4934aCAS |
[30] S. Wang, Q. Zhang, B. Tan, L. Liu, L. Shi, J. Macromol. Sci., Part B: Phys. 2011, 50, 2307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVKktb8%3D&md5=b405b9888859e425c609bb2646a80cebCAS |