Alkali Metal Hydride Complexes: Well-Defined Molecular Species of Saline Hydrides*
Lea Fohlmeister A and Andreas Stasch A BA School of Chemistry, 17 Rainforest Walk, Clayton Campus, Monash University, Melbourne, Vic. 3800, Australia.
B Corresponding author. Email: Andreas.Stasch@monash.edu
Lea Fohlmeister studied chemistry at the Humboldt University of Berlin, Germany, and received her chemistry diploma in 2009. In the same year, she was awarded a scholarship from the German Academic Exchange Service (DAAD) to undertake doctoral research studies overseas, which she conducted and successfully completed between 2010 and 2014 under the supervision of Professor Cameron Jones at Monash University, Melbourne, Australia. Since 2014, she has been working as a post-doctoral research fellow with Dr Andreas Stasch at Monash University, focussing on the preparation and reactivity of main group element hydride complexes. |
Andreas Stasch studied chemistry in Göttingen, Germany, and completed his chemistry diploma (2000) and Ph.D. (Dr. rer. nat., 2003) under the guidance of Professor Herbert W. Roesky. He then undertook post-doctoral research with Professor Cameron Jones from 2004 to 2006 at Cardiff University, UK, which included a visit to Monash University, Melbourne, Australia, working with Professor Peter Junk in 2005. He has been an ARC-funded Research Fellow at Monash University since 2007 and an ARC Future Fellow since 2012, working on unusual organometallic and inorganic molecular compounds, including low oxidation state complexes, metal hydride systems, and metal-metal bonded compounds. He was awarded the Alan Sargeson Lectureship by the Inorganic Chemistry division of the RACI in 2010 and the RACI Organometallic Award in 2014. |
Australian Journal of Chemistry 68(8) 1190-1201 https://doi.org/10.1071/CH15206
Submitted: 23 April 2015 Accepted: 15 May 2015 Published: 22 June 2015
Abstract
The first examples of well-defined alkali metal hydride complexes have been synthesised and characterised in recent years, and their properties and underlying principles for their generation and stabilisation are emerging. This article gives an account of the hydrides of the alkali metals (Group 1 metals) and selected ‘-ate’ complexes containing hydrides and alkali metals, and reviews the chemistry of well-defined alkali metal hydride complexes including their syntheses, structures, and characteristics. The properties of the alkali metal hydrides LiH, NaH, KH, RbH, and CsH are dominated by their ionic NaCl structure. Stable, soluble, and well-defined LiH and NaH complexes have been obtained by metathesis and β-hydride elimination reactions that require suitable ligands with some steric bulk and the ability to coordinate to several metal ions. These novel hydride complexes reward with higher reactivity and different properties compared with their parent ionic solids.
References
[1] A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie, 102nd edn 2007 (de Gruyter: Berlin, New York).[2] C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 4th edn 2012 (Pearson: New York, NY).
[3] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn 1997 (Elsevier: Oxford).
[4] L. Schlapbach, A. Züttel, Nature 2001, 414, 353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFGitrk%3D&md5=d3ba598e7798d51896617c254b35298bCAS | 11713542PubMed |
[5] J. Graetz, Chem. Soc. Rev. 2009, 38, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtLzF&md5=900a2b49022f97991ecb8e86e2999edbCAS | 19088966PubMed |
[6] S. Aldridge, A. J. Downs, Chem. Rev. 2001, 101, 3305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1emsLY%3D&md5=ee8da770746e71c6bba72af321880c05CAS | 11840988PubMed |
[7] S. Harder, Chem. Commun. 2012, 11165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKgsr7J&md5=b8c63d0c964a83996269091fcebaaf26CAS |
[8] P. Rittmeyer, U. Wietelmann, Hydrides, Ullmann’s Encyclopedia of Industrial Chemistry 2000 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
[9] R. T. Howie, O. Narygina, C. L. Guillaume, S. Evans, E. Gregoryanz, Phys. Rev. B 2012, 86, 064108.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. Hooper, P. Baettig, E. Zurek, J. Appl. Phys. 2012, 111, 112611.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. S. Priyanga, A. T. A. Meenaatci, R. R. Palanichamy, K. Iyakutti, Comput. Mater. Sci. 2014, 84, 206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFentrg%3D&md5=7e277bbe33342d55714650f80f280957CAS |
[12] R. Ahuja, O. Eriksson, J. M. Wills, B. Johansson, J. Phys. Condens. Matter 1998, 10, L153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVKrtbs%3D&md5=dc8636ebdab791fd8d554f574483e177CAS |
[13] K. Ghandehari, H. Luo, A. L. Ruoff, S. S. Trail, F. J. DiSalvo, Mod. Phys. Lett. B 1995, 9, 1133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos1Snu74%3D&md5=19a842a6a737087f3679cdd161ac8985CAS |
[14] K. Ghandehari, H. Luo, A. L. Ruoff, S. S. Trail, F. J. DiSalvo, Phys. Rev. Lett. 1995, 74, 2264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVaku7w%3D&md5=34d6adcca1def5fad63cdd7e2ac04a7aCAS | 10057884PubMed |
[15] J.-B. Liu, W. H. E. Schwarz, J. Li, Chem. – Eur. J. 2013, 19, 14758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2nu7%2FO&md5=11918e4230fdd13f7a0e613def7f4e1eCAS | 24105988PubMed |
[16] M. Vasiliu, S. Li, K. A. Peterson, D. Feller, J. L. Gole, D. A. Dixon, J. Phys. Chem. A 2010, 114, 4272.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislyksbg%3D&md5=abadda7c73eae974dfb042f1b9d8674dCAS | 20201583PubMed |
[17] W. Grochala, P. P. Edwards, Chem. Rev. 2004, 104, 1283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht12gtrw%3D&md5=0e51a3e8da4b6ad8484b0c96eaba99a2CAS | 15008624PubMed |
[18] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 2007, 32, 1121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvValsb8%3D&md5=ce1a104297c37d84e70aa2d56ad0e6ddCAS |
[19] S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, Chem. Rev. 2007, 107, 4111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVahsrbL&md5=c0e98cfceeb7738b4483b6b061f31780CAS |
[20] D.J. Wolstenholme, J.L. Dobson, G.S. McGrady, Dalton Trans. 2015, 44, 9718.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1ygurY%3D&md5=760f960a9d2cd504c44abd7fbddfdbe7CAS | 25915435PubMed |
[21] P. Sirsch, F. N. Che, J. T. Titah, G. S. McGrady, Chem. – Eur. J. 2012, 18, 9476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFejsLg%3D&md5=57a374b15231cc2d35316445dd141d44CAS | 22730237PubMed |
[22] D. J. Wolstenholme, M. M. D. Roy, M. E. Thomas, G. S. McGrady, Chem. Commun. 2014, 3820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktF2kt7g%3D&md5=e4edfe9aa59dceaa2c0f6f9425252ad1CAS |
[23] V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Int. J. Energy Res. 2007, 31, 637.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. J. Vajo, G. L. Olson, Scr. Mater. 2007, 56, 829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Gktrs%3D&md5=631ca13137343fd4625d0fe5871fc3c9CAS |
[25] A. M. Seayad, D. M. Antonelli, Adv. Mater. 2004, 16, 765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1yksbw%3D&md5=511ce00df9b74ead07c7b1c7a238b10bCAS |
[26] I. P. Jain, P. Jain, A. Jain, J. Alloys Compd. 2010, 503, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWis7o%3D&md5=8fdb0f90021a1e68979a92c69ca26213CAS |
[27] L. H. Rude, T. K. Nielsen, D. B. Ravnsbæk, U. Bösenberg, M. B. Ley, B. Richter, L. M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, T. R. Jensen, Phys. Status Solidi A 2011, 208, 1754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFyjur0%3D&md5=2193a932f95006f383311d09ab2c31a1CAS |
[28] P. E. de Jongh, P. Adelhelm, ChemSusChem 2010, 3, 1332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCkt77M&md5=f0b2cfcccd22d5148aeaf91063315accCAS | 21080405PubMed |
[29] L. K. Wagner, E. H. Majzoub, M. D. Allendorf, J. C. Grossman, Phys. Chem. Chem. Phys. 2012, 14, 6611.
| Crossref | GoogleScholarGoogle Scholar | 22456531PubMed |
[30] D. Guerard, N. E. Elalem, S. El Hadigui, L. Ansari, P. Lagrange, F. Rousseaux, H. Estrade-Szwarckopf, J. Conard, P. Lauginie, J. Less Common Met. 1987, 131, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltVOqtbo%3D&md5=2a298ae7684e7e163a735b3cde4555eeCAS |
[31] L. Elansari, L. Antoine, R. Janot, J. C. Gachon, J. J. Kuntz, D. Guérard, J. Alloys Compd. 2001, 329, L5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFyit7Y%3D&md5=499c5963a28e50cb509b25e8c9850b9bCAS |
[32] P. A. A. Klusener, L. Brandsma, H. D. Verkruijsse, P. R. Schleyer, T. Friedl, R. Pi, Angew. Chem. Int. Ed. Engl. 1986, 25, 465.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) E. M. Zippi, Synth. Commun. 1994, 24, 2515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFCqs7k%3D&md5=f4b8c2bccdaeec267734c1efff596484CAS |
(b) R. Pi, T. Friedl, P. R. Schleyer, P. Klusener, L. Brandsma, J. Org. Chem. 1987, 52, 4299.
| Crossref | GoogleScholarGoogle Scholar |
[34] (a) E. C. Ashby, S. A. Noding, J. Org. Chem. 1980, 45, 1041.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXht1yqu7k%3D&md5=93dd3ee4d7d1c88ef4fde4d2ed3a4951CAS |
(b) E. C. Ashby, R. D. Schwartz, Inorg. Chem. 1971, 10, 355.
| Crossref | GoogleScholarGoogle Scholar |
[35] C. J. Kowalski, G. S. Lal, J. Am. Chem. Soc. 1986, 108, 5356.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xltleisrk%3D&md5=57e621b9de29a1396dccf9ada20e6a85CAS |
[36] B. Bogdanovic, Angew. Chem. Int. Ed. Engl. 1985, 24, 262.
| Crossref | GoogleScholarGoogle Scholar |
[37] (a) P. R. Schleyer, A. J. Kos, E. Kaufmann, J. Am. Chem. Soc. 1983, 105, 7617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmsF2m&md5=0ffe4ed835a36b68d3037731ce12eefeCAS |
(b) M.-Y. Li, J. San Filippo, Organometallics 1983, 2, 554.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. H. Glaze, T. L. Brewer, J. Am. Chem. Soc. 1969, 91, 4490.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. H. Glaze, G. M. Adams, J. Am. Chem. Soc. 1966, 88, 4653.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. A. Finnegan, H. W. Kutta, J. Org. Chem. 1965, 30, 4138.
| Crossref | GoogleScholarGoogle Scholar |
[38] Y. Fort, Tetrahedron Lett. 1995, 36, 6051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslWrsLo%3D&md5=997aa08c08c2c09110465f7f21fa86edCAS |
[39] T. Enoki, S. Miyajima, M. Sano, H. Inokuchi, J. Mater. Res. 1990, 5, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1Gls70%3D&md5=b526aebcebf55d8bdd8e1e91b7ed95a3CAS |
[40] X. Wang, L. Andrews, J. Phys. Chem. A 2007, 111, 6008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVKlurc%3D&md5=656e203efc09f58d18bd2247a8241b94CAS | 17547379PubMed |
[41] X. Wang, L. Andrews, J. Phys. Chem. A 2007, 111, 7098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFejt7k%3D&md5=18b0c98697f7612fbb89a6360db9167fCAS | 17602543PubMed |
[42] X. Wang, L. Andrews, J. Phys. Chem. A 2007, 111, 12260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WltLnF&md5=86f7f4394d04ac4077eb305af2d55003CAS | 17958401PubMed |
[43] E. Zurek, R. Hoffmann, N. W. Ashcroft, A. R. Oganov, A. O. Lyakhov, Proc. Natl. Acad. Sci. USA 2009, 106, 17640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2rur7J&md5=d9db1007736852e14fab84bd4fc2c033CAS | 19805046PubMed |
[44] R. Napan, E. L. Peltzer y Blanca, Int. J. Hydrogen Energy 2012, 37, 5784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1yjsLg%3D&md5=d25ea85d64a3513c8617a284bce5a688CAS |
[45] P. Baettig, E. Zurek, Phys. Rev. Lett. 2011, 106, 237002.
| Crossref | GoogleScholarGoogle Scholar | 21770539PubMed |
[46] V. V. Struzhkin, D.-Y. Kim, E. Stavrou, T. Muramatsu, H.-K. Mao, C. J. Pickard, R. J. Needs, V. B. Prakapenka, A. F. Goncharov, eprint arXiv:1412.1542, 2014. Available at http://arxiv.org/abs/1412.1542.
[47] J. Hooper, E. Zurek, J. Phys. Chem. C 2012, 116, 13322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFOms7s%3D&md5=416b162e3d99cd3c537c39c95c8e7d92CAS |
[48] J. Hooper, E. Zurek, Chem. – Eur. J. 2012, 18, 5013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOgs7c%3D&md5=1536a8c7d1b6c76c17f9a3a8967d2151CAS | 22392860PubMed |
[49] A. Shamp, J. Hooper, E. Zurek, Inorg. Chem. 2012, 51, 9333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WqurnI&md5=86a6367cd792dbce3b8eab958b34a747CAS | 22897718PubMed |
[50] G. Chalasinski, R. A. Kendall, J. Simons, J. Phys. Chem. 1987, 91, 6151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmt1entr0%3D&md5=6410312d40179f60ac714c20ba3759daCAS |
[51] S. J. Grabowski, R. Hoffmann, ChemPhysChem 2012, 13, 2286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVShu7k%3D&md5=c2554a2fbd94e5a213172a22329c598cCAS | 22517729PubMed |
[52] W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov, E. Stavrou, M. Somayazulu, V. B. Prakapenka, Z. Konôpková, Science 2013, 342, 1502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemu77O&md5=05b4e9ce3096e944ba2df3ff85a440cdCAS | 24357316PubMed |
[53] (a) R. L. Mills, J. New Mater. Electrochem. Syst. 2003, 6, 45.
| 1:CAS:528:DC%2BD3sXivVyktrg%3D&md5=c80ea7de6c504478bad80693c2726b17CAS |
(b) R. L. Mills, J. Dong, W. Good, A. Voigt, Int. J. Hydrogen Energy 2001, 26, 1199.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. L. Mills, B. Dhandapani, M. Nansteel, J. He, T. Shannon, A. Echezuria, Int. J. Hydrogen Energy 2001, 26, 339.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. L. Mills, B. Dhandapani, N. Greenig, J. He, Int. J. Hydrogen Energy 2000, 25, 1185.
| Crossref | GoogleScholarGoogle Scholar |
[54] (a) A. S. de Castro, Phys. Lett. A 2007, 369, 380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOrtLbL&md5=61b9b5d21633462188efc594f733d6bfCAS |
(b) N. Dombey, Phys. Lett. A 2006, 360, 62.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. K. Vijh, Int. J. Hydrogen Energy 2001, 26, 281.
| Crossref | GoogleScholarGoogle Scholar |
[55] R. J. Wehmschulte, P. P. Power, Polyhedron 2000, 19, 1649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtF2jtbc%3D&md5=200ab325384f4d2b2096057ab3ccd9fbCAS |
[56] M. Hudlicky, Reductions in Organic Chemistry 1984 (Ellis Horwood Limited: Chichester).
[57] A. F. Richards, A. D. Phillips, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 2003, 125, 3204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVygu7w%3D&md5=2e0fd8302a47566e79a83bbb6803764fCAS | 12630862PubMed |
[58] M. Veith, P. König, A. Rammo, V. Huch, Angew. Chem. Int. Ed. 2005, 44, 5968.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKqs7vL&md5=34fd8e498ea4ad451e99d28b124f3259CAS |
[59] (a) P. D. Prince, M. J. Bearpark, G. S. McGrady, J. W. Steed, Dalton Trans. 2008, 271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSisA%3D%3D&md5=93344ec0ddbe39970b39bdd6a012334aCAS | 18097494PubMed |
(b) M. J. Bearpark, G. S. McGrady, P. D. Prince, J. W. Steed, J. Am. Chem. Soc. 2001, 123, 7736.
| Crossref | GoogleScholarGoogle Scholar |
[60] (a) R. Corriu, C. Guhin, B. Henner, Q. Wang, Inorg. Chim. Acta 1992, 198–200, 705.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. J. P. Corriu, C. Gubrin, B. J. L. Henner, Q. Wang, Organometallics 1991, 10, 3574.
| Crossref | GoogleScholarGoogle Scholar |
[61] F. Buch, J. Brettar, S. Harder, Angew. Chem. Int. Ed. 2006, 45, 2741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWku7Y%3D&md5=33cf712aaed9648617af4b19616d6b42CAS |
[62] (a) M. Itoh, K. Inoue, J.-i. Ishikawa, K. Iwata, J. Organomet. Chem. 2001, 629, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFCiu7o%3D&md5=cdd69ff8d3c37214ebc0d9a33a6f7f14CAS |
(b) B. Becker, R. J. P. Corriu, C. Guerin, B. J. L. Henner, J. Organomet. Chem. 1989, 369, 147.
(c) R. J. P. Corriu, C. Guerin, J. Chem. Soc., Chem. Commun. 1980, 168.
| Crossref | GoogleScholarGoogle Scholar |
[63] C. Appelt, J. C. Slootweg, K. Lammertsma, W. Uhl, Angew. Chem. Int. Ed. 2012, 51, 5911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFCiurg%3D&md5=670c929a02556b58b94bfbf2294c297cCAS |
[64] (a) S. D. Robertson, A. R. Kennedy, J. J. Liggat, R. E. Mulvey, Chem. Commun. 2015, 5452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFeisr3J&md5=2d5d9a441681bac9155c2e2ebcafeb00CAS |
(b) R. E. Mulvey, L. Dunbar, W. Clegg, L. Horsburgh, Angew. Chem. Int. Ed. Engl. 1996, 35, 753.
| Crossref | GoogleScholarGoogle Scholar |
[65] (a) P. C. Andrikopoulos, D. R. Armstrong, A. R. Kennedy, R. E. Mulvey, C. T. O’Hara, R. B. Rowlings, Eur. J. Inorg. Chem. 2003, 3354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFSkurc%3D&md5=aa2b3fa786b7bb0a0b5e5e1015b76885CAS |
(b) D. J. Gallagher, K. W. Henderson, A. R. Kennedy, C. T. O’Hara, R. E. Mulvey, R. B. Rowlings, Chem. Commun. 2002, 376.
| Crossref | GoogleScholarGoogle Scholar |
[66] D. V. Graham, A. R. Kennedy, R. E. Mulvey, C. T. O’Hara, Acta Crystallogr. C 2006, 62, m366.
| Crossref | GoogleScholarGoogle Scholar | 16891710PubMed |
[67] D. J. Liptrot, M. S. Hill, M. F. Mahon, Chem. – Eur. J. 2014, 20, 9871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWns73N&md5=c2a53a66416dbb9a95c6bf8d2dd94c64CAS | 25042080PubMed |
[68] G. T. DeLong, D. Hoffmann, H. D. Nguyen, R. D. Thomas, J. Am. Chem. Soc. 1997, 119, 11998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVCms7w%3D&md5=f0b96f85fb33f68a75bcb4e8ba795fa4CAS |
[69] D. Hoffmann, T. Kottke, R. J. Lagow, R. D. Thomas, Angew. Chem. Int. Ed. 1998, 37, 1537.
| Crossref | GoogleScholarGoogle Scholar |
[70] (a) S. R. Boss, M. P. Coles, V. Eyre-Brook, F. Garcia, R. Haigh, P. B. Hitchcock, M. McPartlin, J. V. Morey, H. Naka, P. R. Raithby, H. A. Sparkes, C. W. Tate, A. E. H. Wheatley, Dalton Trans. 2006, 5574.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Knsg%3D%3D&md5=78d71ec92019a2ee0ce09f2ef7dd3918CAS | 17225894PubMed |
(b) S. R. Boss, J. M. Cole, R. Haigh, R. Snaith, A. E. H. Wheatley, G. J. McIntyre, P. R. Raithby, Organometallics 2004, 23, 4527.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. R. Boss, M. P. Coles, R. Haigh, P. B. Hitchcock, R. Snaith, A. E. H. Wheatley, Angew. Chem. Int. Ed. 2003, 42, 5593.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. R. Armstrong, R. P. Davies, W. Clegg, S. T. Liddle, D. J. Linton, P. Schooler, R. Snaith, A. E. H. Wheatley, Phosphorus Sulfur Silicon Relat. Elem. 2001, 168, 93.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. R. Armstrong, W. Clegg, R. P. Davies, S. T. Liddle, D. J. Linton, P. R. Raithby, R. Snaith, A. E. H. Wheatley, Angew. Chem. Int. Ed. 1999, 38, 3367.
| Crossref | GoogleScholarGoogle Scholar |
[71] J. Haywood, A. E. H. Wheatley, Dalton Trans. 2008, 3378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKht70%3D&md5=e043e084788cdef76349991dc38cb471CAS | 18580974PubMed |
[72] A. Stasch, Angew. Chem. Int. Ed. 2012, 51, 1930.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1KisA%3D%3D&md5=d9986c79ac1208d4cadd476d75151e30CAS |
[73] A. Stasch, Dalton Trans. 2014, 7078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtV2rsLY%3D&md5=2802ddcae1359e0f63b7a0661f02e534CAS | 24668322PubMed |
[74] K. N. Houk, N. G. Rondan, P. R. Schleyer, E. Kaufmann, T. Clark, J. Am. Chem. Soc. 1985, 107, 2821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhs1Krsr4%3D&md5=98951293473eb79ef160913219da21c6CAS |
[75] A. Stasch, Angew. Chem. Int. Ed. 2014, 53, 1338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFart7vK&md5=5349b48f4c92ea5ef4817f4888a998acCAS |
[76] M. J. Michalczyk, Organometallics 1992, 11, 2307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1Orurc%3D&md5=3ac63314114d413b45942e8106f6be00CAS |
[77] P. Jochmann, J. P. Davin, T. P. Spaniol, L. Maron, J. Okuda, Angew. Chem. Int. Ed. 2012, 51, 4452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksV2htLc%3D&md5=e81f3d89db2dc461594d23119e1131bbCAS |
[78] M. Y. Redko, M. Vlassa, J. E. Jackson, A. W. Misiolek, R. H. Huang, J. L. Dye, J. Am. Chem. Soc. 2002, 124, 5928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlGjurk%3D&md5=caa8d440cfb4e2ac88492aa6359bb6c2CAS | 12022811PubMed |
[79] A. Stasch, Chem. Commun. 2015, 51, 5056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXis1yrtr4%3D&md5=50a1a5fc5a4da4d0d0538289940d0db6CAS |
[80] (a) J.-F. Carpentier, Y. Sarazin, Top. Organomet. Chem. 2013, 45, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWqsrvE&md5=1560731160a9b54a95ccfb2c3be23388CAS |
(b) T. Tsubogo, Y. Yamashita, S. Kobayashi, Top. Organomet. Chem. 2013, 45, 243.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. R. Crimmin, M. S. Hill, Top. Organomet. Chem. 2013, 45, 191.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. L. Reznichenko, K. C. Hultzsch, Top. Organomet. Chem. 2013, 43, 51.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Harder, Chem. Rev. 2010, 110, 3852.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. P. Coles, Curr. Org. Chem. 2008, 12, 1220.
| Crossref | GoogleScholarGoogle Scholar |
[81] A. A. Toutov, W.-B. Liu, K. N. Betz, A. Fedorov, B. M. Stoltz, R. H. Grubbs, Nature 2015, 518, 80.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitFGju7c%3D&md5=d921afcfbd1ff41c4fe289a7e9558e36CAS | 25652999PubMed |
[82] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules 1979 (Van Nostrand Reinhold Co.: New York, NY).