Syntheses of Iron(0) Complexes of Symmetrical Trialkylphosphines with Three Terminal Vinyl Groups, P((CH2)mCH=CH2)3
Georgette M. Lang A , Dirk Skaper B , Takanori Shima B , Michael Otto B , Leyong Wang B and John A. Gladysz A B CA Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77843-3012, USA.
B Institut für Organische Chemie and Interdisciplinary Centre for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany.
C Corresponding author. Email: gladysz@mail.chem.tamu.edu
Australian Journal of Chemistry 68(9) 1342-1351 https://doi.org/10.1071/CH15178
Submitted: 13 April 2015 Accepted: 21 April 2015 Published: 27 May 2015
Abstract
Reactions of (BDA)Fe(CO)3 (BDA = benzylideneacetone) and P((CH2)mCH=CH2)3 (1; m = 4, a; 5, b; 6, c; 7, d; 8, e) give the trigonal bipyramidal bis(phosphine) complexes trans-Fe(CO)3(P((CH2)mCH=CH2)3)2 (2a–e) as moderately air-sensitive yellow-orange oils in 60–75 % yields after workup. These and NO+BF4– react to give the cationic iron dicarbonyl nitrosyl complexes trans-[Fe(CO)2(NO)(P((CH2)mCH=CH2)3)2]+BF4– (3a–e; orange oils, 88–98 %). Further substitution is effected with n-Bu4N+X– (X = Cl, Br, I, or CN) to give trans-Fe(CO)(NO)(X)(P((CH2)mCH=CH2)3)2 (4a–e-X; red oils, 73–93 %). The NMR (1H, 13C, 31P) and IR properties of these adducts, which provide precursors to gyroscope-like complexes by intramolecular C=C metatheses, are analysed in detail.
References
[1] (a) T.-A. V. Khuong, J. E. Nuñez, C. E. Godinez, M. A. Garcia-Garibay, Acc. Chem. Res. 2006, 39, 413.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Kms7s%3D&md5=a7591efb7f9ed3ec9ec705e33184e99cCAS |
(b) C. S. Vogelsberg, M. A. Garcia-Garibay, Chem. Soc. Rev. 2012, 41, 1892.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) W. Setaka, S. Ohmizu, C. Kabuto, M. Kira, Chem. Lett. 2007, 36, 1076.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFegtrw%3D&md5=cf13db32306da95df19333322f97a605CAS |
(b) W. Setaka, S. Ohmizu, M. Kira, Chem. Lett. 2010, 39, 468.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Setaka, K. Yamaguchi, J. Am. Chem. Soc. 2012, 134, 12458.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Setaka, K. Yamaguchi, Proc. Natl. Acad. Sci. USA 2012, 109, 9271.
| Crossref | GoogleScholarGoogle Scholar |
(e) W. Setaka, A. Koyama, K. Yamaguchi, Org. Lett. 2013, 15, 5092.
| Crossref | GoogleScholarGoogle Scholar |
[3] T. Shima, F. Hampel, J. A. Gladysz, Angew. Chem., Int. Ed. 2004, 43, 5537.[Angew. Chem. 2004, 116, 5653].
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlOqsrg%3D&md5=2bba4057d9ac9bff3b2361ffaf895f53CAS |
[4] A. J. Nawara, T. Shima, F. Hampel, J. A. Gladysz, J. Am. Chem. Soc. 2006, 128, 4962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVelt7s%3D&md5=1030be2e6eff706ebaccadaf47397150CAS | 16608324PubMed |
[5] L. Wang, F. Hampel, J. A. Gladysz, Angew. Chem., Int. Ed. Engl. 2006, 45, 4372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsV2it7Y%3D&md5=0c1b76988f2f3261f9ad476fb756b22dCAS |
[6] L. Wang, T. Shima, F. Hampel, J. A. Gladysz, Chem. Commun. 2006, 4075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCiu7nF&md5=72d24558e08ea2e2e9e993384a8d5bb0CAS |
[7] G. D. Heß, F. Hampel, J. A. Gladysz, Organometallics 2007, 26, 5129.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. Skopek, J. A. Gladysz, J. Organomet. Chem. 2008, 693, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlWhu7o%3D&md5=8c1bdf01eb355520c6fe56fd249a8615CAS |
[9] P. D. Zeits, G. P. Rachiero, F. Hampel, J. H. Reibenspies, J. A. Gladysz, Organometallics 2012, 31, 2854.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFegsrw%3D&md5=3766739cbab48277120e8476d93663afCAS |
[10] A. J. Nawara-Hultzsch, M. Stollenz, M. Barbasiewicz, S. Szafert, T. Lis, F. Hampel, N. Bhuvanesh, J. A. Gladysz, Chem. – Eur. J. 2014, 20, 4617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1OhsL8%3D&md5=6d4226cd1923a47a86e9e6891930b2d1CAS | 24604783PubMed |
[11] A. J. Nawara-Hultzsch, K. Skopek, T. Shima, M. Barbasiewicz, G. D. Hess, D. Skaper, J. A. Gladysz, Z. Naturforsch. B: Anorg. Chem. Org. Chem 2010, 65, 414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFKqs78%3D&md5=9fe83c2ab2e013b99d7101f75a4083abCAS |
[12] (a) Other papers dealing with precursor ligands and complexes for high-profile synthetic targets: L. V. Dinh, F. Hampel, J. A. Gladysz, J. Organomet. Chem. 2005, 690, 493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyqsg%3D%3D&md5=ba0bd348b576c8a4c36ad2a101aa5eccCAS |
(b) L. de Quadras, J. Stahl, F. Zhuravlev, J. A. Gladysz, J. Organomet. Chem. 2007, 692, 1859.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) G. S. Kottas, L. I. Clarke, D. Horinek, J. Michl, Chem. Rev. 2005, 105, 1281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1KmtL4%3D&md5=5ed9b4854b3e65afdc9c76811886b4e5CAS | 15826014PubMed |
(b) J. J. Arcenegui, P. García-Sánchez, H. Morgan, A. Ramos, Phys. Rev. E 2013, 88, 033025-1.
(c) P. Dhar, C. D. Swayne, T. M. Fischer, T. Kline, A. Sen, Nano Lett. 2007, 7, 1010.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. Bermudez, N. Capron, T. Gase, F. G. Gatti, F. Kajzar, D. A. Leigh, F. Zerbetto, S. Zhang, Nature 2000, 406, 608.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. D. Horansky, L. I. Clarke, J. C. Price, T.-A. V. Khuong, P. D. Jarowski, M. A. Garcia-Garibay, Phys. Rev. B 2005, 72, 014302.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. D. Horansky, L. I. Clarke, E. B. Winston, J. C. Price, S. D. Karlen, P. D. Jarowski, R. Santillan, M. A. Garcia-Garibay, Phys. Rev. B 2006, 74, 054306.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) J. A. S. Howell, P. L. Josty, B. F. G. Johnson, J. Lewis, J. Organomet. Chem. 1972, 39, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XkslGgs78%3D&md5=456ae2697839162436c1e8597245376aCAS |
(b) M. Brookhart, G. O. Nelson, J. Organomet. Chem. 1979, 164, 193.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) J. R. Sowa, V. Zanotti, G. Facchin, R. J. Angelici, J. Am. Chem. Soc. 1991, 113, 9185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsFKgt7w%3D&md5=0d3ab7654ab00b16b039d5f85aa5830cCAS |
(b) Throughout the present paper, the descriptor trans is with reference to the two phosphine ligands.
[16] W. H. Hersh, J. Chem. Educ. 1997, 74, 1485.The J values given represent the apparent coupling between adjacent peaks of the triplet.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslShur0%3D&md5=83ec1b5fef52c40b8f816adf1f13ae9eCAS |
[17] The 1H,1H COSY experiment allowed assignment of the PCH2, PCH2CH2, and PCH2CH2CH2 signals, and the 1H,13C{1H} HSQC experiment in turn correlated these to the PCH2CH2CH2 signals.
[18] (a) B. F. G. Johnson, J. A. Segal, J. Chem. Soc., Dalton Trans. 1972, 1268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XksVamtrk%3D&md5=50f7653a9f8a706bc48f285835536f04CAS |
(b) See also D. Touchard, H. Le Bozec, P. Dixneuf, Inorg. Chim. Acta 1979, 33, L141.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. R. Ahmed, J. L. A. Roustan, M. Y. Al-Janabi, Inorg. Chem. 1985, 24, 2526.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. R. Crooks, B. F. G. Johnson, J. Chem. Soc. A 1968, 1238.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. L. A. Roustan, A. Forgues, J. Organomet. Chem. 1980, 184, C13.
| Crossref | GoogleScholarGoogle Scholar |
[19] G. Dolcetti, L. Busetto, A. Palazzi, Inorg. Chem. 1974, 13, 222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsFCiug%3D%3D&md5=fed9e5d22f3825c45f48f1d3bb6b5800CAS |
[20] W. E. Carroll, A. F. Deeney, F. J. Lalor, J. Chem. Soc., Dalton Trans. 1974, 1430.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) M. Jänicke, H.-U. Hund, H. Berke, Chem. Ber. 1991, 124, 719.
| Crossref | GoogleScholarGoogle Scholar |
(b) In tables 3 and 4 in ref. [21a], the labels a and c (denoting the phosphorus donor ligand) for compounds 5 and 7 are reversed.
[22] See also J. L. A. Roustan, J. Y. Merour, A. Forgues, J. Organomet. Chem. 1980, 186, C23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXit1Wmt7k%3D&md5=a308cad659a36c15a09e5a3cc88d7e61CAS |
[23] It is recommended that 1.0–1.5 equiv. of n-Bu4N+X– be employed. Some experiments are described with larger excesses. These did not yield detectable amounts of the by-products 5a–e, but would have if the salts had been added as solids (see text).
[24] T. E. Bitterwolf, B. Steele, Inorg. Chem. Commun. 2006, 9, 512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVynsrs%3D&md5=cf965cfa6519d8dd24b72685c0a92453CAS |