Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Syntheses of Iron(0) Complexes of Symmetrical Trialkylphosphines with Three Terminal Vinyl Groups, P((CH2)mCH=CH2)3

Georgette M. Lang A , Dirk Skaper B , Takanori Shima B , Michael Otto B , Leyong Wang B and John A. Gladysz A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77843-3012, USA.

B Institut für Organische Chemie and Interdisciplinary Centre for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany.

C Corresponding author. Email: gladysz@mail.chem.tamu.edu

Australian Journal of Chemistry 68(9) 1342-1351 https://doi.org/10.1071/CH15178
Submitted: 13 April 2015  Accepted: 21 April 2015   Published: 27 May 2015

Abstract

Reactions of (BDA)Fe(CO)3 (BDA = benzylideneacetone) and P((CH2)mCH=CH2)3 (1; m = 4, a; 5, b; 6, c; 7, d; 8, e) give the trigonal bipyramidal bis(phosphine) complexes trans-Fe(CO)3(P((CH2)mCH=CH2)3)2 (2ae) as moderately air-sensitive yellow-orange oils in 60–75 % yields after workup. These and NO+BF4 react to give the cationic iron dicarbonyl nitrosyl complexes trans-[Fe(CO)2(NO)(P((CH2)mCH=CH2)3)2]+BF4 (3ae; orange oils, 88–98 %). Further substitution is effected with n-Bu4N+X (X = Cl, Br, I, or CN) to give trans-Fe(CO)(NO)(X)(P((CH2)mCH=CH2)3)2 (4ae-X; red oils, 73–93 %). The NMR (1H, 13C, 31P) and IR properties of these adducts, which provide precursors to gyroscope-like complexes by intramolecular C=C metatheses, are analysed in detail.


References

[1]  (a) T.-A. V. Khuong, J. E. Nuñez, C. E. Godinez, M. A. Garcia-Garibay, Acc. Chem. Res. 2006, 39, 413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Kms7s%3D&md5=a7591efb7f9ed3ec9ec705e33184e99cCAS |
      (b) C. S. Vogelsberg, M. A. Garcia-Garibay, Chem. Soc. Rev. 2012, 41, 1892.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) W. Setaka, S. Ohmizu, C. Kabuto, M. Kira, Chem. Lett. 2007, 36, 1076.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFegtrw%3D&md5=cf13db32306da95df19333322f97a605CAS |
      (b) W. Setaka, S. Ohmizu, M. Kira, Chem. Lett. 2010, 39, 468.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Setaka, K. Yamaguchi, J. Am. Chem. Soc. 2012, 134, 12458.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Setaka, K. Yamaguchi, Proc. Natl. Acad. Sci. USA 2012, 109, 9271.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) W. Setaka, A. Koyama, K. Yamaguchi, Org. Lett. 2013, 15, 5092.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. Shima, F. Hampel, J. A. Gladysz, Angew. Chem., Int. Ed. 2004, 43, 5537.[Angew. Chem. 2004, 116, 5653].
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlOqsrg%3D&md5=2bba4057d9ac9bff3b2361ffaf895f53CAS |

[4]  A. J. Nawara, T. Shima, F. Hampel, J. A. Gladysz, J. Am. Chem. Soc. 2006, 128, 4962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVelt7s%3D&md5=1030be2e6eff706ebaccadaf47397150CAS | 16608324PubMed |

[5]  L. Wang, F. Hampel, J. A. Gladysz, Angew. Chem., Int. Ed. Engl. 2006, 45, 4372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsV2it7Y%3D&md5=0c1b76988f2f3261f9ad476fb756b22dCAS |

[6]  L. Wang, T. Shima, F. Hampel, J. A. Gladysz, Chem. Commun. 2006, 4075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCiu7nF&md5=72d24558e08ea2e2e9e993384a8d5bb0CAS |

[7]  G. D. Heß, F. Hampel, J. A. Gladysz, Organometallics 2007, 26, 5129.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  K. Skopek, J. A. Gladysz, J. Organomet. Chem. 2008, 693, 857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlWhu7o%3D&md5=8c1bdf01eb355520c6fe56fd249a8615CAS |

[9]  P. D. Zeits, G. P. Rachiero, F. Hampel, J. H. Reibenspies, J. A. Gladysz, Organometallics 2012, 31, 2854.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFegsrw%3D&md5=3766739cbab48277120e8476d93663afCAS |

[10]  A. J. Nawara-Hultzsch, M. Stollenz, M. Barbasiewicz, S. Szafert, T. Lis, F. Hampel, N. Bhuvanesh, J. A. Gladysz, Chem. – Eur. J. 2014, 20, 4617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1OhsL8%3D&md5=6d4226cd1923a47a86e9e6891930b2d1CAS | 24604783PubMed |

[11]  A. J. Nawara-Hultzsch, K. Skopek, T. Shima, M. Barbasiewicz, G. D. Hess, D. Skaper, J. A. Gladysz, Z. Naturforsch. B: Anorg. Chem. Org. Chem 2010, 65, 414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFKqs78%3D&md5=9fe83c2ab2e013b99d7101f75a4083abCAS |

[12]  (a) Other papers dealing with precursor ligands and complexes for high-profile synthetic targets: L. V. Dinh, F. Hampel, J. A. Gladysz, J. Organomet. Chem. 2005, 690, 493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyqsg%3D%3D&md5=ba0bd348b576c8a4c36ad2a101aa5eccCAS |
      (b) L. de Quadras, J. Stahl, F. Zhuravlev, J. A. Gladysz, J. Organomet. Chem. 2007, 692, 1859.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) G. S. Kottas, L. I. Clarke, D. Horinek, J. Michl, Chem. Rev. 2005, 105, 1281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1KmtL4%3D&md5=5ed9b4854b3e65afdc9c76811886b4e5CAS | 15826014PubMed |
      (b) J. J. Arcenegui, P. García-Sánchez, H. Morgan, A. Ramos, Phys. Rev. E 2013, 88, 033025-1.
      (c) P. Dhar, C. D. Swayne, T. M. Fischer, T. Kline, A. Sen, Nano Lett. 2007, 7, 1010.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) V. Bermudez, N. Capron, T. Gase, F. G. Gatti, F. Kajzar, D. A. Leigh, F. Zerbetto, S. Zhang, Nature 2000, 406, 608.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. D. Horansky, L. I. Clarke, J. C. Price, T.-A. V. Khuong, P. D. Jarowski, M. A. Garcia-Garibay, Phys. Rev. B 2005, 72, 014302.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. D. Horansky, L. I. Clarke, E. B. Winston, J. C. Price, S. D. Karlen, P. D. Jarowski, R. Santillan, M. A. Garcia-Garibay, Phys. Rev. B 2006, 74, 054306.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) J. A. S. Howell, P. L. Josty, B. F. G. Johnson, J. Lewis, J. Organomet. Chem. 1972, 39, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XkslGgs78%3D&md5=456ae2697839162436c1e8597245376aCAS |
      (b) M. Brookhart, G. O. Nelson, J. Organomet. Chem. 1979, 164, 193.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) J. R. Sowa, V. Zanotti, G. Facchin, R. J. Angelici, J. Am. Chem. Soc. 1991, 113, 9185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsFKgt7w%3D&md5=0d3ab7654ab00b16b039d5f85aa5830cCAS |
         (b) Throughout the present paper, the descriptor trans is with reference to the two phosphine ligands.

[16]  W. H. Hersh, J. Chem. Educ. 1997, 74, 1485.The J values given represent the apparent coupling between adjacent peaks of the triplet.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslShur0%3D&md5=83ec1b5fef52c40b8f816adf1f13ae9eCAS |

[17]  The 1H,1H COSY experiment allowed assignment of the PCH2, PCH2CH2, and PCH2CH2CH2 signals, and the 1H,13C{1H} HSQC experiment in turn correlated these to the PCH2CH2CH2 signals.

[18]  (a) B. F. G. Johnson, J. A. Segal, J. Chem. Soc., Dalton Trans. 1972, 1268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XksVamtrk%3D&md5=50f7653a9f8a706bc48f285835536f04CAS |
      (b) See also D. Touchard, H. Le Bozec, P. Dixneuf, Inorg. Chim. Acta 1979, 33, L141.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. R. Ahmed, J. L. A. Roustan, M. Y. Al-Janabi, Inorg. Chem. 1985, 24, 2526.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. R. Crooks, B. F. G. Johnson, J. Chem. Soc. A 1968, 1238.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. L. A. Roustan, A. Forgues, J. Organomet. Chem. 1980, 184, C13.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  G. Dolcetti, L. Busetto, A. Palazzi, Inorg. Chem. 1974, 13, 222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsFCiug%3D%3D&md5=fed9e5d22f3825c45f48f1d3bb6b5800CAS |

[20]  W. E. Carroll, A. F. Deeney, F. J. Lalor, J. Chem. Soc., Dalton Trans. 1974, 1430.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) M. Jänicke, H.-U. Hund, H. Berke, Chem. Ber. 1991, 124, 719.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) In tables 3 and 4 in ref. [21a], the labels a and c (denoting the phosphorus donor ligand) for compounds 5 and 7 are reversed.

[22]  See also J. L. A. Roustan, J. Y. Merour, A. Forgues, J. Organomet. Chem. 1980, 186, C23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXit1Wmt7k%3D&md5=a308cad659a36c15a09e5a3cc88d7e61CAS |

[23]  It is recommended that 1.0–1.5 equiv. of n-Bu4N+X be employed. Some experiments are described with larger excesses. These did not yield detectable amounts of the by-products 5ae, but would have if the salts had been added as solids (see text).

[24]  T. E. Bitterwolf, B. Steele, Inorg. Chem. Commun. 2006, 9, 512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVynsrs%3D&md5=cf965cfa6519d8dd24b72685c0a92453CAS |