Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Adsorption of Water and Methanol on Highly Graphitized Thermal Carbon Black and Activated Carbon Fibre

Toshihide Horikawa A C , Masanori Takenouchi A , Duong D. Do B , Ken-Ichiro Sotowa A , J. Rafael Alcántara-Avila A and David Nicholson B
+ Author Affiliations
- Author Affiliations

A Department of Advanced Materials, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan.

B School of Chemical Engineering, The University of Queensland, St Lucia, Qld 4072, Australia.

C Corresponding author. Email: horikawa@tokushima-u.ac.jp

Australian Journal of Chemistry 68(9) 1336-1341 https://doi.org/10.1071/CH15134
Submitted: 18 March 2015  Accepted: 16 April 2015   Published: 5 May 2015

Abstract

Adsorption of water and methanol on different carbonaceous solids was carried out to investigate the roles of porous structure and functional groups on the adsorption of associating fluids. A highly graphitized thermal carbon black, non-porous Carbopack F, was chosen to study the effects of functional groups and their concentration, and two samples of porous activated carbon fibre (ACF), microporous A-5 and micro-mesoporous A-15, were used to investigate the interplay between the functional groups and confinement. On Carbopack F, adsorption of water at 298 K is not experimentally detectable until the relative pressure reaches about 0.9, and the adsorption isotherm exhibits a large hysteresis loop spanning a very wide range of pressure; by contrast methanol adsorption at the same temperature shows an onset of adsorption at a lower relative pressure of 0.2 and the isotherm has a very small hysteresis loop. This early onset, compared with water, is due to the dispersion interaction between the methyl group and the graphene surface; an interaction which is absent in water. For the porous ACF samples, the onset of water uptake shifts from a relative pressure of 0.9; as observed for Carbopack F, to the much lower values, depending on pore size, of 0.3 for microporous A-5 and 0.5 for micro-mesoporous A-15.


References

[1]  L. Hamon, P. L. Llewellyn, T. Devic, A. Ghoufi, G. Clet, V. Guillerm, G. D. Pirngruber, G. Maurin, C. Serre, G. Driver, W. van Beek, E. Jolimaitre, A. Vimont, M. Daturi, G. Ferey, J. Am. Chem. Soc. 2009, 131, 17490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2qu7%2FE&md5=15cef46eab3ac08e193acce6bc5c8704CAS | 19904944PubMed |

[2]  S. Sircar, in Adsorption by Carbons (Eds E. J. Bottani, J. M. D. Tascón) 2008, Ch. 22, pp. 565–592 (Elsevier: Amsterdam).

[3]  F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. Llewellyn, G. Maurin, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd edn 2013 (Academic Press: London).

[4]  M. Thommes, Chem. Ing. Tech. 2010, 82, 1059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFemt7Y%3D&md5=66c6664840769ba6d9d1aa418f34b316CAS |

[5]  T. Horikawa, Y. Kitakaze, T. Sekida, J. Hayashi, M. Katoh, Bioresour. Technol. 2010, 101, 3964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlWrsrY%3D&md5=217c2b73a5d562c35e1b8b21977789b3CAS | 20133125PubMed |

[6]  T. Horikawa, J. i. Hayashi, K. Muroyama, Carbon 2002, 40, 709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xitlalsb0%3D&md5=4eca9132b46a4aa34d3656f3b00ef57aCAS |

[7]  V. T. Nguyen, D. D. Do, D. Nicholson, Carbon 2014, 66, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eqtr3K&md5=88571fcd1142cf92a9ba7d51886a803cCAS |

[8]  T. Horikawa, T. Sekida, J. i. Hayashi, M. Katoh, D. D. Do, Carbon 2011, 49, 416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGntLzL&md5=f8ac5e44e8fc68c1fdc0c7502af8a4ccCAS |

[9]  T. Horikawa, Y. Zeng, D. D. Do, K.-I. Sotowa, J. R. Alcántara Avila, J. Colloid Interface Sci. 2015, 439, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWmurvM&md5=26a5b12a401420a4d727884fb0131a69CAS | 25463168PubMed |

[10]  D. D. Do, S. L. Johnathan Tan, Y. Zeng, C. Fan, V. T. Nguyen, T. Horikawa, D. Nicholson, J. Colloid Interface Sci. 2015, 446, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Snur8%3D&md5=69675a25fe478ab7daaf74e1aa2c40ecCAS | 25660710PubMed |

[11]  V. T. Nguyen, D. D. Do, D. Nicholson, J. Jagiello, J. Phys. Chem. C 2011, 115, 16142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVOgsL0%3D&md5=3a8350a4842ec9ba9e71db81e1b6822fCAS |

[12]  X. Ye, N. Qi, M. D. LeVan, Carbon 2003, 41, 2519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1aqurw%3D&md5=62312bdc72483537055cb427c3c2a6aaCAS |

[13]  T. Kimura, H. Kanoh, T. Kanda, T. Ohkubo, Y. Hattori, Y. Higaonna, R. Denoyel, K. Kaneko, J. Phys. Chem. B 2004, 108, 14043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFSrt70%3D&md5=a4231076a5149311e23c092ac2cce15dCAS |

[14]  P. Lodewyckx, Carbon 2010, 48, 2549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWhurc%3D&md5=91a4c6228ee74b9dc424fae54b98f558CAS |

[15]  K. László, O. Czakkel, G. Dobos, P. Lodewyckx, C. Rochas, E. Geissler, Carbon 2010, 48, 1038.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  T. Ohba, K. Kaneko, Langmuir 2011, 27, 7609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGhsrk%3D&md5=384c379b3aff74e30d87eea92ef324a3CAS | 21612248PubMed |

[17]  A. Tóth, K. László, in Novel Carbon Adsorbents (Ed. J. M. D. Tascón) 2012, Ch. 5, pp. 147–171 (Elsevier: Oxford).

[18]  T. Horikawa, N. Sakao, T. Sekida, J. i. Hayashi, D. D. Do, M. Katoh, Carbon 2012, 50, 1833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFOitbw%3D&md5=fe711480e8b63e4c3f46950599f12e9dCAS |

[19]  D. Dollimore, G. R. Heal, J. Appl. Chem. 1964, 14, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXmsVOmsw%3D%3D&md5=a50834dac67c3aba21e0650e39f73c6cCAS |

[20]  H. P. Boehm, Adv. Catal. 1966, 16, 179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XltVemtbo%3D&md5=eb4c2c8fa79207d47915ee6ea47e4c92CAS |

[21]  Y. Zeng, L. Prasetyo, V. T. Nguyen, T. Horikawa, D. D. Do, D. Nicholson, Carbon 2015, 81, 447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslWhtLrL&md5=1953525c57b26791bec841942156578fCAS |

[22]  Z. Liu, T. Horikawa, D. D. Do, D. Nicholson, J. Colloid Interface Sci. 2012, 368, 474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Ghuw%3D%3D&md5=2ce7348c3051a7e7de35be15cbb8f5ecCAS | 22082798PubMed |