Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Efficiently Converting CO2 into C2H4 using a Porphyrin–Graphene Composite Photocatalyst

Meihua Piao A , Nan Liu A , Yanshu Wang A and Chunsheng Feng A B
+ Author Affiliations
- Author Affiliations

A Department of Anesthesiology, First Hospital of Jilin University, Jilin University, Changchun 130023, China.

B Corresponding author. Email: csfeng@jlu.edu.cn

Australian Journal of Chemistry 69(1) 27-32 https://doi.org/10.1071/CH15141
Submitted: 24 March 2015  Accepted: 28 May 2015   Published: 26 June 2015

Abstract

In this work, a photocatalyst consisting of porphyrin and graphene was designed to reduce CO2 to hydrocarbons under visible light. This catalyst can (1) effectively reduce CO2 to hydrocarbons, particularly to C2H4; (2) selectively control the photogenerated electrons transfer path due to the physico-chemical properties of porphyrin and graphene; and (3) reduce the complexity of investigating this photocatalytic process because the photocatalyst has fewer defects, thus preventing the introduction of interference factors.


References

[1]  S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, ACS Nano 2010, 4, 1259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Gmtrg%3D&md5=18dc23406ebac7064fc1878ef9aa9878CAS | 20141175PubMed |

[2]  L. Li, G. D. Li, C. Yan, X. Y. Mu, X. L. Pan, X. X. Zou, K. X. Wang, J. S. Chen, Angew. Chem., Int. Ed. 2011, 50, 8299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVOhtL4%3D&md5=3b37dc5acf5144c395f9bd9bb4bb167bCAS |

[3]  L. Li, Y. Y. Cai, G. D. Li, X. Y. Mu, K. X. Wang, J. S. Chen, Angew. Chem., Int. Ed. 2012, 51, 4702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFehs7Y%3D&md5=76396e78b8050cb875a56b79f634f380CAS |

[4]  J. H. Lunsford, Catal. Today 2000, 63, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKnur4%3D&md5=319a24f5466d93c2b68f226e72b200b5CAS |

[5]  R. A. Periana, O. Mironov, D. Taube, G. Bhalla, C. J. Jones, Science 2003, 301, 814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVGqs78%3D&md5=0a8c9e576b66ab70ef1d0b82a45faa13CAS | 12907796PubMed |

[6]  A. Holmen, Catal. Today 2009, 142, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVSmurk%3D&md5=440aec2cb0784099859b3da745e228d7CAS |

[7]  R. Balasubramanian, S. M. Smith, S. Rawat, L. A. Yatsunyk, T. L. Stemmler, A. C. Rosenzweig, Nature 2010, 465, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVGhtbs%3D&md5=0fbe6dbc21e3a8bd8277c47d791e312aCAS | 20410881PubMed |

[8]  T. S. Wu, L. Y. Zou, D. X. Han, F. H. Li, Q. X. Zhang, L. Niu, Green Chem. 2014, 16, 2142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1yru7s%3D&md5=63ea78e26faa2c6797a79c67eb62221dCAS |

[9]  A. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGntr3F&md5=9c3fbbc927c80161207b6c80ff000824CAS | 19928829PubMed |

[10]  M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kuhn, Angew. Chem., Int. Ed. 2011, 50, 8510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSjtbfP&md5=2d09db627ce19e0793b0e43779b8aa27CAS |

[11]  H. Takeda, K. Koike, H. Inoue, O. Ishitani, J. Am. Chem. Soc. 2008, 130, 2023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFCruw%3D%3D&md5=9c71d52fb010567a608bcebc8282d5d8CAS | 18205359PubMed |

[12]  E. E. Barton, D. M. Rampulla, A. B. Bocarsly, J. Am. Chem. Soc. 2008, 130, 6342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFens7w%3D&md5=789ee7b6f1757598d664a8ac4d28566eCAS | 18439010PubMed |

[13]  S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, J. H. Ye, Y. Zhou, Z. G. Zou, Angew. Chem., Int. Ed. 2010, 49, 6400.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqtLnE&md5=fc48ae7fb873c8945bce48646e42952fCAS |

[14]  N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. Y. He, P. Zapol, J. Am. Chem. Soc. 2011, 133, 3964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWns7k%3D&md5=89b0d45749f8e55adb6edd4aabe7c47fCAS | 21348527PubMed |

[15]  Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, Z. G. Zou, J. Am. Chem. Soc. 2010, 132, 14385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SnsrzO&md5=86912bae0557009bda9760bb32140697CAS | 20866065PubMed |

[16]  S. Asal, M. Saif, H. Hafez, S. Mozia, A. Heciak, D. Moszynski, M. S. A. Abdel-Mottaleb, Int. J. Hydrogen Energy 2011, 36, 6529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslKrsLw%3D&md5=5bfa48a91d2c7dfbbd0a130b185bb21eCAS |

[17]  C. Zhao, A. Kroll, H. Zhao, Q. Zhang, Y. Li, Int. J. Hydrogen Energy 2012, 37, 9967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Kjtrk%3D&md5=caeb9aa267aa0a5ffc58a9edfd80f426CAS |

[18]  A. D. Handoko, J. Tang, Int. J. Hydrogen Energy 2013, 38, 13017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms12jsb8%3D&md5=770407ef7cf3763cbe321bc0b761d91bCAS |

[19]  C. Wang, Z. G. Xie, K. E. deKrafft, W. L. Lin, J. Am. Chem. Soc. 2011, 133, 13445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVWltrk%3D&md5=9b74debf9150822338bd2fd482a0f073CAS | 21780787PubMed |

[20]  K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, J. Am. Chem. Soc. 2011, 133, 20863.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVymtrjJ&md5=bb6cfe87da19b8eecf0b0ebf66831572CAS | 22087856PubMed |

[21]  P. D. Tran, L. H. Wong, J. Barber, J. S. C. Loo, Energy Environ. Sci. 2012, 5, 5902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWnur8%3D&md5=3bfe866007a7b7cab4f16be8230a2dafCAS |

[22]  Y. T. Liang, B. K. Vijayan, K. A. Gray, M. C. Hersam, Nano Lett. 2011, 11, 2865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFKiu7k%3D&md5=7f94ff3dadf1d21145cc79b427f5547cCAS | 21688817PubMed |

[23]  M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, Appl. Catal., B 1999, 23, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFahsL0%3D&md5=b7c713405b2830649410cc2d710dce1dCAS |

[24]  O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes, Nano Lett. 2009, 9, 731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ltLk%3D&md5=dac97a2e52dd2be7ea47d11308a1dbb3CAS | 19173633PubMed |

[25]  X. J. Zhang, F. Han, B. Shi, S. Farsinezhad, G. P. Dechaine, K. Shankar, Angew. Chem., Int. Ed. 2012, 51, 12732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GgsrbM&md5=fbdc69fdb89789a3de5ebe2f106c6a07CAS |

[26]  K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Kqt70%3D&md5=ae6c407de924e8cd3081e0418d2b4199CAS | 15499015PubMed |

[27]  M. Y. Han, B. Ozyilmaz, Y. B. Zhang, P. Kim, Phys. Rev. Lett. 2007, 98, 206805.
         | Crossref | GoogleScholarGoogle Scholar | 17677729PubMed |

[28]  Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntV2js7k%3D&md5=f9815892dee7efc13940c0d37470e078CAS |

[29]  A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, S. Datta, A. Govindaraj, S. K. Pati, C. N. R. Rao, J. Phys. Chem. C 2008, 112, 15704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSjtrzO&md5=3ca6b5016195fe32707ce0ca36e4c62eCAS |

[30]  A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jitlersg%3D%3D&md5=c8b229ddf2e10d4ac1172d7df00265c7CAS | 17155573PubMed |

[31]  S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvF2js7g%3D&md5=1dbb71198ea6e3a2496fe27b97006729CAS | 16855586PubMed |

[32]  H. Yano, F. Shirai, M. Nakayama, K. Ogura, J. Electroanal. Chem. 2002, 519, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSksL8%3D&md5=5e8c287da38cec212ba0fc0e1675e30aCAS |

[33]  A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Norskov, Energy Environ. Sci. 2010, 3, 1311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yrsbnP&md5=6b4dc44b754ab7cde03f53754a64c225CAS |

[34]  K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5, 7050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWqtro%3D&md5=c3c63396cb6d0c814a5dfd4ae0d5f5ebCAS |