Oximes in the Isoxazolone, Pyrazolone, and 1,2,3-Triazolone Series: Experimental and Computational Investigation of Energies and Structures of E/Z Isomers of α-Oxo-Oximes in the Gas Phase and in Solution
Rainer Koch A D , Hans-Joachim Wollweber B and Curt Wentrup B C DA Institut für Chemie and Center of Interface Science, Carl von Ossietzky Universität Oldenburg, PO Box 2503, 26111 Oldenburg, Germany.
B Fachbereich Chemie der Philipps-Universität Marburg, 35037 Marburg, Germany.
C School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
D Corresponding authors. Email: rainer.koch@uni-oldenburg.de; wentrup@uq.edu.au
Australian Journal of Chemistry 68(9) 1329-1335 https://doi.org/10.1071/CH15095
Submitted: 26 February 2015 Accepted: 2 April 2015 Published: 29 April 2015
Abstract
The structures of a series of heterocyclic α-oxo-oximes, viz. 4-oximinoisoxazolone-5(4H)-ones 1 and 2,4-oximino-5(4H)-pyrazolones 3–5, and 4-oximino-1-phenyl-1,2,3-triazol-5(4H)-one 6, were investigated experimentally and computationally. Whereas the intramolecularly H-bonded ZZ isomers of these oximes are usually the most stable in the gas phase, this preference is overcome by intermolecular H-bonding to a solvent or another molecule. For 1,3-dimethyl-4-oximino-5(4H)-pyrazolone 3b a turnaround is seen when going from the solid (predominantly Z isomer) to DMSO solution (predominantly E isomer), which can be ascribed to an intermolecular H-bond between the oxime OH function and a DMSO molecule. Such isomerization is not seen in CDCl3, where intermolecular H-bonding is unimportant. The Z/E-isomerization in DMSO solution is accelerated by photolysis. Calculations of the energies of different conformers, and of 13C NMR data at the GIAO-ωb97xD/6-31G(d)//M06-2X/6-311++G(d,p) level permit a clear-cut correlation of conformer structures with observed 13C NMR spectra.
References
[1] (a) V. Meyer, A. Janny, Ber. Dtsch. Chem. Ges. 1882, 15, 1164.| Crossref | GoogleScholarGoogle Scholar |
(b) V. Meyer, A. Janny, Ber. Dtsch. Chem. Ges. 1882, 15, 1324.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Yamane, K. Narasaki, in Science of Synthesis: Houben-Weyl Methods of Molecular Transformations (Ed. A. Padwa) 2004, Vol. 27, Ch. 27.15, pp. 605–648 (Thieme: Stuttgart).
(d) The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids (Eds Z. Rappoport, J. F. Liebman) 2009 (Wiley: Hoboken, NJ).
[2] R. E. Gawley, T. Nagy, Tetrahedron Lett. 1984, 25, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitV2isLg%3D&md5=4dedad4cff62d5dfacba4080a03b7a3eCAS |
[3] G. J. Karabatsos, R. A. Taller, Tetrahedron 1968, 24, 3347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhtFertrY%3D&md5=15508dff50e2ab25455a80ab577725c5CAS |
[4] A. Andrzejewska, L. Lapinski, I. Reva, R. Fausto, Phys. Chem. Chem. Phys. 2002, 4, 3289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFCit7Y%3D&md5=2da083b62769bcee6658065cbbfd9569CAS |
[5] R. D. Bach, G. J. Wolber, J. Org. Chem. 1982, 47, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XjsVSqtw%3D%3D&md5=1820eeeeaa2ba6981ab7b42a16f25779CAS |
[6] R. Glaser, A. Streitwieser, J. Am. Chem. Soc. 1989, 111, 7340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlegtbo%3D&md5=ac52657ed71cbf9bd0f165a2192cbaa5CAS |
[7] C. E. Holloway, C. P. J. Vuik, Tetrahedron Lett. 1979, 20, 1017.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. M. Caldeira, V. M. S. Gil, Tetrahedron 1976, 32, 2613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhslSlurk%3D&md5=fe74f69c666bf0feb429188edfb04fd9CAS |
[9] (a) G. C. Levy, G. L. Nelson, J. Am. Chem. Soc. 1972, 94, 4897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xks1yhsbw%3D&md5=0e4619c73a89bb69c7da3e74d6dd8519CAS |
(b) N. Gurudata, Can. J. Chem. 1972, 50, 1956.
| Crossref | GoogleScholarGoogle Scholar |
[10] G. W. Buchanan, B. A. Dawson, Can. J. Chem. 1978, 56, 2200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXjvVCmsA%3D%3D&md5=714fe5779aed335bceb931c3373e5419CAS |
[11] (a) NMR and X-ray studies of isatin derivatives: N. Sin, B. L. Venables, X. Liu, S. Huang, Q. Gao, A. Ng, R. Dalterio, R. Rajamani, N. A. Meanwell, J. Heterocycl. Chem. 2009, 46, 432.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12huro%3D&md5=b92acc5bf89285280ae17e22ec65ff7aCAS |
(b) NMR: W. Holzer, Z. Gyorgydeak, J. Heterocycl. Chem. 1996, 33, 675.
| Crossref | GoogleScholarGoogle Scholar |
(c) X-ray (EE structure): Y. Miao, X. Zhang, C. Liu, J. You, Acta Crystallogr. Sect. E: Struct. Rep. Online 2011, 67, o1291.
| Crossref | GoogleScholarGoogle Scholar |
[12] A. Krzan, J. Mavri, Chem. Phys. 2002, 277, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlOjsbo%3D&md5=c135b76911f6e1d9f1b407e3b612219aCAS |
[13] G. Ivanova, V. Enchev, Chem. Phys. 2001, 264, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslOktLY%3D&md5=5c353fd82a16c41fd02d049761648753CAS |
[14] V. Enchev, G. Ivanova, A. Ugrinov, G. D. Neykov, S. Minchev, N. Stoyanov, J. Mol. Struct. 1998, 440, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVSl&md5=b0e93f2ae868a3faf904257bf6588ce6CAS |
[15] (a) G. I. Yranzo, J. Elguero, R. Flammang, C. Wentrup, Eur. J. Org. Chem. 2001, 2209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFCisbo%3D&md5=cbee9b28f49402cd1a03649b9377de24CAS |
(b) H. S. Rzepa, C. Wentrup, J. Org. Chem. 2013, 78, 7565.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) C. Wentrup, B. Gerecht, H. Briehl, Angew. Chem. Int. Ed. Engl. 1979, 18, 467.
| Crossref | GoogleScholarGoogle Scholar |
(b) B. Winnewisser, P. Jensen, J. Mol. Spectrosc. 1983, 101, 408.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Pasinszki, N. Kishimoto, K. Ohno, J. Phys. Chem. A 1999, 103, 6746.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Schulze, O. Koja, B. P. Winnewisser, M. Winnewisser, J. Mol. Struct. 2000, 517–518, 307.
| Crossref | GoogleScholarGoogle Scholar |
(e) W. Feng, J. F. Herschberger, J. Phys. Chem. A 2012, 116, 10285.
| Crossref | GoogleScholarGoogle Scholar |
[17] H. Müller-Starke, Thermische Reaktionen von (4H)-Isoxazol-5-on-Derivaten und ESR-spektroskopische Untersuchungen an Radikalen aus 4-Oximino-(4H)-Isoxazol-5-onen und strukturverwandten Heterocyclen, Diplomarbeit 1979, Universität Marburg, Marburg, Germany.
[18] A. Buß, Evaluation theoretischer Methoden zur Berechnung NMR-chemischer Verschiebungen von Heterocyclen, Bachelorarbeit 2012, Universität Oldenburg, Oldenburg, Germany. In this thesis, the level of theory employed in the current work (ωb97xD/6-31G(d)//M06-2X/6-311++G(d,p)) has proved to reliably reproduce the ordering of the chemical shifts.
[19] (a) J. B. Stothers, P. C. Lauterbur, Can. J. Chem. 1964, 42, 1563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXksFagtbg%3D&md5=2dc607c4a03ac0109646df63c6dc9e31CAS |
(b) J. H. Billman, S. A. Sojka, P. R. Taylor, J. Chem. Soc., Perkin Trans. 2 1972, 2034.
| Crossref | GoogleScholarGoogle Scholar |
(c) H.-O. Kalinowski, S. Berger, S. Braun, 13C-NMR Spectroscopy 1991 (Wiley: Hoboken, NJ).
[20] There are two experimental sets of 13C NMR data reported, one in CDCl3 and one in DMSO. However, the two sets differ significantly in one value: while the third-largest shift in CDCl3 is at 132.7 ppm, it is 142.7 ppm in DMSO. All our calculations predict this value to be around 141 ppm, so we assume that the number reported for the CDCl3 measurement is erroneous due to a typing error.
[21] (a) Examples of photoisomerization of oximes: R. J. Olsen, J. Photochem. Photobiol. A 1997, 103, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsVOgt7g%3D&md5=632d08c91ddd078a374a386c161e098bCAS |
(b) A. Olszanowski, E. Krzyzanowska, K. Alejski, J. Chem. Technol. Biotechnol. 1997, 68, 236.
| Crossref | GoogleScholarGoogle Scholar |
[22] L. Bouveault, A. Wahl, Ber. Dtsch. Chem. Ges 1905, 38, 928.
[23] L. Claisen, W. Zedel, Ber. Dtsch. Chem. Ges 1891, 24, 140.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) T. Curtius, R. Jay, J. Prakt. Chem. 1889, 39, 52.[2],
(b) T. Curtius, J. Prakt. Chem. 1894, 50, 512.[2],
(c) M. Betti, Gazz. Chim. Ital. 1904, 34I, 211.
[25] L. Knorr, Justus Liebigs Ann. Chem. 1887, 238, 137 (185).
| Crossref | GoogleScholarGoogle Scholar |
[26] G. Ponzio, G. Ruggeri, Gazz. Chim. Ital. 1926, 56, 741.
[27] A. Michaelis, H. Dorn, Justus Liebigs Ann. Chem. 1907, 352, 152 (167).
| Crossref | GoogleScholarGoogle Scholar |
[28] T. Tsumaki, Bull. Chem. Soc. Jpn. 1931, 6, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3MXhvFahtA%3D%3D&md5=554d8e43e2a39b65126c8030a14b3b3cCAS |
[29] C. Cardani, L. Merlini, E. Boeri, Gazz. Chim. Ital. 1966, 96, 973.
[30] R. Mondelli, Gazz. Chim. Ital. 1965, 95, 1371.
| 1:CAS:528:DyaF28XlvFentg%3D%3D&md5=dc0624b3d7dd8d8f4ec74972f90f0285CAS |
[31] O. Dimroth, L. Taub, Ber. Dtsch. Chem. Ges. 1906, 39, 3915.
[32] O. Dimroth, O. Dienstbach, Ber. Dtsch. Chem. Ges. 1908, 41, 4055.
| Crossref | GoogleScholarGoogle Scholar |
[33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Rev. B01 2009 (Gaussian, Inc.: Wallingford, CT).
[34] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=617bfcbe706c86c63b0e99917e707520CAS |
[35] (a) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCnu7c%3D&md5=0334977d330e2194e6e2eb35d876bf52CAS |
(b) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265.
| Crossref | GoogleScholarGoogle Scholar |
[36] (a) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsVKis7s%3D&md5=8c5b8f5fa6ce62466a5d8323551e5258CAS |
(b) S. Miertus, J. Tomasi, Chem. Phys. 1982, 65, 239.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
| Crossref | GoogleScholarGoogle Scholar |
[37] F. London, Naturwissenschaften 1927, 15, 187.
| Crossref | GoogleScholarGoogle Scholar |
[38] F. London, J. Phys. Radium 1937, 8, 397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXitVahsA%3D%3D&md5=c068a588e9cb1d30eeaf566a2f03d5a6CAS |
[39] R. Ditchfield, Mol. Phys. 1974, 27, 789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkvVektrk%3D&md5=b7b25119579aea4f5c055f0a102372b1CAS |
[40] J. D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 84106.
| Crossref | GoogleScholarGoogle Scholar |
[41] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFOiuw%3D%3D&md5=1f3515dee67e9758f91f21ab83552a67CAS |
[42] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XptVemsw%3D%3D&md5=9927c7f41b704a2e868e0dbe745d1329CAS |
[43] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFGnsL4%3D&md5=590429d7d7ba18b2376cc8f22e86d52fCAS |