Synthesis and Properties of Amphipathic Poly(d,l-lactide-co-glycolide)-polyethylene glycol-poly(d,l-lactide-co-glycolide) Triblock Copolymers
Wenyao Zhen A , Yannan Zhu A , Weiping Wang A and Zhaosheng Hou A BA College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China.
B Corresponding author. Email: houzhaosheng@tsinghua.org.cn
Australian Journal of Chemistry 68(10) 1593-1598 https://doi.org/10.1071/CH15094
Submitted: 25 February 2015 Accepted: 27 April 2015 Published: 19 May 2015
Abstract
In this paper, amphipathic poly(d,l-lactide-co-glycolide)-polyethylene glycol-poly(d,l-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers were synthesized via bulk ring-opening polymerization with d,l-lactide (d,l-LA), glycolide (GA), and polyethylene glycol (PEG) as raw materials and tin(ii) bis(2-ethylhexanoate) (Sn(Oct)2) as catalyst. The synthesis and purification processes were free from organic solvent. The chemical structure of PLGA-PEG-PLGA was characterized by Fourier transform infrared spectroscopy, 1H NMR, gel permeation chromatography, differential scanning calorimetry, and thermo gravimetric analysis. The thermo-sensitivity of PLGA-PEG-PLGA aqueous solution was examined, and the results showed that the copolymers concentration, mass ratio of d,l-LA/GA, and molecular weight of PEG played important parts in controlling the sol–gel transition temperature. The sol–gel transition occurred at lower temperatures with higher copolymer concentrations and mass ratios of d,l-LA/GA. In contrast, the sol–gel transition temperature increased with higher molecular weights of PEG. In vitro drug release studies were carried out using ceftibuten as a model drug. The results indicated that PLGA-PEG-PLGA prepared with 30 wt-% PEG1500 and 70 wt-% PLGA (mass ratio of d,l-LA/GA = 2 : 1) was an effective system for achieving long-sustained controlled release. The drug release from the hydrogel showed a higher initial release followed by a slower pattern up to 120 h, and the mean retention time was ~50 h.
References
[1] I. Lacik, Aust. J. Chem. 2006, 59, 508.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlOntr8%3D&md5=025067d05311a09a3442765ca8c504a0CAS |
[2] T. Kissel, Y. Li, F. Unger, Adv. Drug Delivery Rev. 2002, 54, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWr&md5=c1cdfd32896a2703760b11191c228bd3CAS |
[3] H. Kranz, R. Bodmeier, Int. J. Pharm. 2007, 332, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVSlu7w%3D&md5=7722950c8c140f14edfec2184b2c3611CAS | 17084049PubMed |
[4] C. B. Packhaeuser, J. Schnieders, C. G. Oster, T. Kissel, Eur. J. Pharm. Biopharm. 2004, 58, 445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGnsL0%3D&md5=77459e99ffd198eaec01de1d5806af5eCAS | 15296966PubMed |
[5] Y. Tang, J. Singh, Int. J. Pharm. 2009, 365, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKnur%2FE&md5=542fa9f4fc3cfa5cdc7e965d7a3c569eCAS | 18786623PubMed |
[6] E. Khodaverdi, F. S. M. Tekie, S. A. Mohajeri, F. Ganji, G. Zohuri, F. Hadizadeh, AAPS PharmSciTech 2012, 13, 590.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVSjs7Y%3D&md5=cf1146168076d54d71aed7783aa0c614CAS | 22528547PubMed |
[7] M. K. Joo, M. H. Park, B. G. Choi, B. Jeong, J. Mater. Chem. 2009, 19, 5891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Ojsbo%3D&md5=550a4f44fb5ca7f25af2ec4ae6873620CAS |
[8] D. Y. Ko, U. P. Shinde, B. Yeon, B. Jeong, Prog. Polym. Sci. 2013, 38, 672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWjsrbN&md5=215f587a8da6d804e3acf9a6bae312f2CAS |
[9] L. Yu, H. Zhang, J. Ding, Colloid Polym. Sci. 2010, 288, 1151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslOlurg%3D&md5=3b8107d392965e129da50bb35f9b72adCAS |
[10] C. L. He, S. W. Kim, D. S. Lee, J. Controlled Release 2008, 127, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVeqtbg%3D&md5=dd3e207ee6fa0b75735baa469fd4934aCAS |
[11] S. Naficy, H. R. Brown, J. M. Razal, G. M. Spinks, P. G. Whitten, Aust. J. Chem. 2011, 64, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVegt7bP&md5=2d69099ddaf6772bacb5749bb752f792CAS |
[12] T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOhsrrM&md5=d4a9854e17b82c03286a49b5e1168892CAS | 23892784PubMed |
[13] Y. Kohno, N. Nakamura, H. Ohno, Aust. J. Chem. 2012, 65, 1548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmtrbJ&md5=debbb9a24e749b916e2e847e1bfd2208CAS |
[14] B. Jeong, Y. H. Bae, D. S. Lee, S. W. Kim, Nature 1997, 388, 860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslajur8%3D&md5=30c9807b94faf1ac625ed55be1cc8eeeCAS | 9278046PubMed |
[15] A. A. Ghahremankhani, F. Dorkoosh, R. Dinarvand, Polym. Bull. 2007, 59, 637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GhsLvK&md5=8ba28c654b297d166ab9c6ade282ee9dCAS |
[16] M. Qiao, D. Chen, X. Ma, Y. Liu, Int. J. Pharm. 2005, 294, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFKktbc%3D&md5=39d6d3017e22195874f2e0e450df364cCAS | 15814234PubMed |
[17] A. A. Ghahremankhani, F. Dorkoosh, R. Dinarvand, Pharm. Dev. Technol. 2008, 13, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlKgt7w%3D&md5=d054a4797b39b883b006e18f7fd00e59CAS | 18300099PubMed |
[18] M. Korber, R. Bodmeier, Eur. J. Pharm. Sci. 2008, 35, 283.
| Crossref | GoogleScholarGoogle Scholar | 18721875PubMed |
[19] E. Khodaverdi, F. Hadizadeh, F. S. M. Tekie, A. Jalali, S. A. Mohajeri, F. Ganji, Polym. Bull. 2012, 69, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVWqt7o%3D&md5=05226fc37c91c9309f19215ccbf773e4CAS |
[20] A. Hatefi, B. Amsden, J. Controlled Release 2002, 80, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFyrs7s%3D&md5=396316fc538f0f6bed2a11f15df4976dCAS |
[21] C. B. Packhaeuser, J. Schnieders, C. G. Oster, T. Kissel, Eur. J. Pharm. Biopharm. 2004, 58, 445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGnsL0%3D&md5=77459e99ffd198eaec01de1d5806af5eCAS | 15296966PubMed |
[22] M. Rani, A. Agarwal, Y. S. Negi, BioResources 2010, 5, 2765.
[23] M. N. Moghadam, V. Kolesov, A. Vogel, H. A. Klok, D. P. Pioletti, Biomaterials 2014, 35, 450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOlsL%2FO&md5=6cf4f64f437793f8009d33d154ab1adcCAS | 24112806PubMed |
[24] S. Pachava, S. Puttachari, A. Shariff, R. S. Thakur, Int. J. Pharm. Sci. Rev. Res. 2014, 24, 176.
| 1:CAS:528:DC%2BC2cXhtlOnsrvM&md5=94fc469b20120c834e41d9b9ec8dae18CAS |
[25] R. Praveen, P. R. P. Verma, S. K. Singh, J. K. George, J. Pharm. Invest. 2015, 45, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVGmu7nI&md5=911d50dc0188ccf0a338f8f0516ba0b2CAS |
[26] S. Marild, U. Jodal, T. Sandberg, Pediatr. Nephrol. 2009, 24, 521.
| Crossref | GoogleScholarGoogle Scholar | 18818954PubMed |
[27] I. Demirel, R. Kruse, A. Onnberg, K. Persson, Microb. Pathog. 2015, 78, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVShsrzI&md5=64dd1678bf2b3e8eef8647aca55ad37cCAS | 25433242PubMed |
[28] S. Chen, R. Pieper, D. C. Webster, J. Singh, Int. J. Pharm. 2005, 288, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGhurrP&md5=5e0368534b856fd4fcd05916226a1600CAS | 15620860PubMed |
[29] B. G. Choi, S. H. Cho, H. Lee, M. H. Cha, K. Park, B. Jeong, D. K. Han, Macromolecules 2011, 44, 2269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKgu7k%3D&md5=b70c4b58c7e6d02cbadac6180330e14dCAS |
[30] B. Jeong, Y. K. Choi, Y. H. Bae, G. Zentner, S. W. Kim, J. Controlled Release 1999, 62, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsV2qsr4%3D&md5=55debd0059e226e48ea4f99c165a2063CAS |
[31] M. Qiao, D. Chen, X. Ma, Y. Liu, Int. J. Pharm. 2005, 294, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFKktbc%3D&md5=39d6d3017e22195874f2e0e450df364cCAS | 15814234PubMed |
[32] B. Jeong, Y. H. Bae, S. W. Kim, Colloids Surf., B 1999, 16, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFylurk%3D&md5=e3e1aee5007d41cca43792d818511f3dCAS |
[33] N. Passerini, D. Q. M. Craig, J. Controlled Release 2001, 73, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtV2ns7k%3D&md5=4650a4e043b8acfb876dcf57bb11befdCAS |
[34] E. Khodaverdi, F. S. M. Tekie, S. A. Mohajeri, F. Ganji, G. Zohuri, F. Hadizadeh, AAPS PharmSciTech 2012, 13, 590.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVSjs7Y%3D&md5=cf1146168076d54d71aed7783aa0c614CAS | 22528547PubMed |
[35] Z. Jiang, Y. You, X. Deng, J. Hao, Polymer 2007, 48, 4786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVanu7Y%3D&md5=86c873306e0aabaf4310f972e2c57cf0CAS |
[36] H. Zhang, L. Yu, J. Ding, Macromolecules 2008, 41, 6493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVGrsrw%3D&md5=576671a655d2d993166f8af31e86ec1aCAS |