New, Homochiral Synthons Obtained through Simple Manipulations of Enzymatically Derived 3-Halo-cis-1,2-dihydrocatechols
Lorenzo V. White A , Ping Lan A , Brett D. Schwartz A , Anthony C. Willis A and Martin G. Banwell A BA Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia.
B Corresponding author. Email: Martin.Banwell@anu.edu.au
Australian Journal of Chemistry 68(10) 1467-1471 https://doi.org/10.1071/CH15061
Submitted: 5 February 2015 Accepted: 26 May 2015 Published: 30 June 2015
Abstract
The bromoepoxide 5a, which is obtained from the homochiral and enzymatically derived cis-1,2-dihydrocatechol 1a, is readily and efficiently transformed into either isomer 8a or the corresponding methoxymethyl-ether 2a. Though both of these products can be fully characterized, they are somewhat unstable, with the former being converted into the crystalline enone 3a on standing and the latter readily participating in a Diels–Alder cycloaddition reaction with the potent dienophile N-phenyl-1,2,4-triazoline-3,5-dione to give adduct 7a. The single-crystal X-ray structures of compounds 3a and 7a are reported. Using the related chemistry the chloro-analogue, 3b, of enone 3a can be obtained.
References
[1] (a) For reviews on methods for generating cis-1,2-dihydrocatechols by microbial dihydroxylation of the corresponding aromatics, as well as the synthetic applications of these metabolites, see: T. Hudlicky, D. Gonzalez, D. T. Gibson, Aldrichimica Acta 1999, 32, 35.| 1:CAS:528:DyaK1MXmtlCmtLg%3D&md5=55bafa2515442461ddfa567090a8c93bCAS |
(b) M. G. Banwell, A. J. Edwards, G. J. Harfoot, K. A. Jolliffe, M. D. McLeod, K. J. McRae, S. G. Stewart, M. Vögtle, Pure Appl. Chem. 2003, 75, 223.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. A. Johnson, Org. React. 2004, 63, 117.
(d) T. Hudlicky, J. W. Reed, Synlett 2009, 685.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. J.-Y. D. Bon, B. Lee, M. G. Banwell, I. A. Cade, Chim. Oggi 2012, 30, 22.
[2] See, for example, M. A. Vila, M. Brovetto, G. Gamenara, P. Bracco, G. Zinola, G. Seoane, S. Rodríguez, I. Carrera, J. Mol. Catal. B: Enzym. 2013, 96, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1KlurfK&md5=b6a5378df427c2387b60f29c798b898aCAS |
[3] T. Hudlicky, J. D. Price, F. Rulin, T. Tsunoda, J. Am. Chem. Soc. 1990, 112, 9439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVCiuw%3D%3D&md5=c307087555267c9c0d27dc8ad36f1657CAS |
[4] M. G. Banwell, N. Haddad, T. Hudlicky, T. C. Nugent, M. F. Mackay, S. L. Richards, J. Chem. Soc., Perkin Trans. 1 1997, 1779.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVektr0%3D&md5=d212326765e484bacd1c1b6d6f0956d6CAS |
[5] R. C. Cookson, S. S. Gupte, I. D. R. Stevens, C. T. Watts, Org. Synth. 1971, 51, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlvFGgtg%3D%3D&md5=2aecdb0cbf70c545e15216334839431fCAS |
[6] T. Hudlicky, E. E. Boros, H. F. Olivo, J. S. Merola, J. Org. Chem. 1992, 57, 1026.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFantw%3D%3D&md5=4c6dd173128a40f1e8fd16af0a6cccd5CAS |
[7] T. Hudlicky, H. Luna, J. D. Price, F. Rulin, J. Org. Chem. 1990, 55, 4683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksF2lt70%3D&md5=f7f7b0ac450fbad9317e0d31d9aa676fCAS |
[8] T. Hudlicky, H. Luna, H. F. Olivo, C. Andersen, T. Nugent, J. D. Price, J. Chem. Soc., Perkin Trans. 1 1991, 2907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFahs7g%3D&md5=4d0a53d306e990c47b0d2b675f05efb9CAS |
[9] (a) E. Vogel, G. Caravatti, P. Franck, P. Aristoff, C. Moody, A.-M. Becker, D. Felix, A. Eschenmoser, Chem. Lett. 1987, 16, 219.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. Deslongchamps, P. Deslongchamps, Org. Biomol. Chem. 2011, 9, 5321.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) R. K. Hill, M. G. Bock, J. Am. Chem. Soc. 1978, 100, 637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtVCmtb8%3D&md5=bdcc276e9fef1d00d09069ee69c63fc1CAS |
(b) R. P. Thummel, B. Rickborn, J. Org. Chem. 1972, 37, 4250.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. J. Moss, B. Rickborn, J. Org. Chem. 1986, 51, 1992.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. F. Trant, T. Hudlicky, Can. J. Chem. 2013, 91, 1179.(see Entry vi, Table 2 of associated supporting information document).
| 1:CAS:528:DC%2BC3sXhs1KjtbvJ&md5=7066588869771f3e3e1b9b7457157ed0CAS |
[12] M. Ichiki, H. Tanimoto, S. Miwa, R. Saito, T. Sato, N. Chida, Chem. – Eur. J. 2013, 19, 264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslejtLrN&md5=61d2149466032e889a67cdbd4d2fd10cCAS | 23180383PubMed |
[13] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksF2hu7s%3D&md5=3ec91dac3f70d50b963bd0dc5b364fa5CAS |
[14] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVerur0%3D&md5=78dd085ab0087d97669b9b0aea1cf21fCAS |
[15] Agilent Technologies, CrysAlisPro Version 1.171.37.33d (release 23–04–2014 CrysAlis171.NET) (compiled 23 April 2014, 17:37:27) 2014.
[16] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
[17] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFekt78%3D&md5=8b033fc538a9dd99e4736dbd95b8272eCAS |