Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Kinetic Method Analysis of the Effect of cis- and trans-Hydroxylation on the Proton Affinity of Proline

Vinod Kanchi A and Joong-Won Shin A B
+ Author Affiliations
- Author Affiliations

A Division of Science, Governors State University, University Park, IL 60484-0975, USA.

B Corresponding author. Email: jshin@govst.edu

Australian Journal of Chemistry 68(10) 1518-1523 https://doi.org/10.1071/CH15047
Submitted: 31 January 2015  Accepted: 17 March 2015   Published: 8 May 2015

Abstract

Proton affinities of proline and hydroxyproline were measured using the Cooks’ kinetic method. The measurements show that hydroxylation increases the proton affinity, which is consistent with X3LYP computation results. This work supports findings from a previous study (S. Mezzache et al., Rapid Commun. Mass Spectrom. 2005, 19, 2279) that modification of proline increases its proton affinity, but it does not provide compelling evidence for the prediction in the same study that proton affinity of the molecule is substantially influenced by intramolecular interactions involving the proton. PBE1PBE calculations suggest that isotropic polarizability rather than intramolecular hydrogen-bonding interactions provides a more suitable diagnosis for trends in proton affinity changes associated with modifications.


References

[1]  S. A. McLuckey, D. Cameron, R. G. Cooks, J. Am. Chem. Soc. 1981, 103, 1313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsFKisrw%3D&md5=666ef07eea24b79cfa450d3e15ae0d5cCAS |

[2]  M. J. Nold, B. A. Cerda, C. Wesdemiotis, J. Am. Soc. Mass Spectrom. 1999, 10, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXosFOj&md5=808a741f5dca6125c860e2bd5e2ddf07CAS | 9888180PubMed |

[3]  K. B. Green-Church, P. A. Limbach, J. Am. Soc. Mass Spectrom. 2000, 11, 24.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFSlu70%3D&md5=ed89d00cb70af4c00f3204b112aef29fCAS | 10631661PubMed |

[4]  C. Afonso, F. Modeste, P. Breton, F. Fournier, J.-C. Tabet, Eur. J. Mass Spectrom. 2000, 6, 443.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVaguw%3D%3D&md5=e38874c8f5f8954fd9b335e978541228CAS |

[5]  J. Shen, J. Ren, Int. J. Mass Spectrom. 2012, 316–318, 147.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J. P. Tan, J. Ren, J. Am. Soc. Mass Spectrom. 2007, 18, 188.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wgsrk%3D&md5=9e58c3763102d47e9bea59cccfcbb139CAS | 17067812PubMed |

[7]  J. Ren, J. P. Tan, R. T. Harper, J. Phys. Chem. A 2009, 113, 10903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFehu73L&md5=53802a8819a9cf889abd5d11ed246497CAS | 19754094PubMed |

[8]  K. K. Morishetti, B. D. S. Huang, J. M. Yates, J. Ren, J. Am. Soc. Mass Spectrom. 2010, 21, 603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFyntbo%3D&md5=30c3dc6ea65200b8b7b650d2d618876aCAS | 20106677PubMed |

[9]  B. A. Cerda, C. Wesdemiotis, J. Am. Chem. Soc. 1995, 117, 9734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFOks7s%3D&md5=4dfc0b98e78ab5d6cd85749a53208b3cCAS |

[10]  B. A. Cerda, C. Wesdemiotis, J. Am. Chem. Soc. 1996, 118, 11884.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmslaqurw%3D&md5=c959c534b5c2334d0f8fffa52eac5238CAS |

[11]  T. T. Dang, E. L. Motell, M. J. Travers, E. P. Clifford, G. B. Ellison, C. H. DePuy, V. M. Bierbaum, Int. J. Mass Spectrom. Ion Processes 1993, 123, 171.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  F. C. Gozzo, M. N. Eberlin, J. Mass Spectrom. 2001, 36, 1140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFOqtLs%3D&md5=7f666dbec5fbe087052e08ea66ec3a35CAS | 11747108PubMed |

[13]  X. Cheng, Z. Wu, C. Fenselau, J. Am. Chem. Soc. 1993, 115, 4844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslejtbY%3D&md5=d45bb32463f09467498064b3735f87a1CAS |

[14]  P. B. Armentrout, J. Am. Soc. Mass Spectrom. 2000, 11, 371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFemsbY%3D&md5=659da527b28e30988da5b9f6962f1be1CAS | 10790840PubMed |

[15]  A. F. Kuntz, A. W. Boynton, G. A. David, K. E. Coyler, J. C. Poutsma, J. Am. Soc. Mass Spectrom. 2002, 13, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1ant7w%3D&md5=095c9ed8d06efd319cd40b500b6121bcCAS | 11777201PubMed |

[16]  S. Mezzache, C. Afonso, C. Pepe, P. Karoyan, F. Fournier, J.-C. Tabet, Rapid Commun. Mass Spectrom. 2003, 17, 1626.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFGmu7o%3D&md5=f7e888055d9ba97d84a967c6496a456aCAS | 12845589PubMed |

[17]  C. Afonso, F. Modeste, P. Breton, F. Fournier, J.-C. Tabet, Eur. J. Mass Spectrom. 2000, 6, 443.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVaguw%3D%3D&md5=e38874c8f5f8954fd9b335e978541228CAS |

[18]  Z. Wu, C. Fenselau, Rapid Commun. Mass Spectrom. 1994, 8, 777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtFGhur0%3D&md5=82763dffb90c5d6d85d58d1dc1b6a8ebCAS |

[19]  V. Addario, Y. Guo, I. K. Chu, Y. Ling, G. Ruggerio, C. F. Rodriquez, A. C. Hopkinson, K. W. M. Siu, Int. J. Mass Spectrom. 2002, 219, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWksro%3D&md5=e651dcf398520377dd9823d5a2fa3142CAS |

[20]  S. Mezzache, C. Pepe, P. Karoyan, F. Fournier, J.-C. Tabet, Rapid Commun. Mass Spectrom. 2005, 19, 2279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosValu7w%3D&md5=0241f0c7a2bca6b750716b0720de2f07CAS | 16021616PubMed |

[21]  C. Muetterties, A. Janiga, K. T. Huynh, M. G. Pisano, V. T. Tripp, D. D. Young, J. C. Poutsma, Int. J. Mass Spectrom. 2014, 369, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsrrJ&md5=7899c1782d7945d3a102b6d43d3ce974CAS |

[22]  Y. Chen, M. T. Rodgers, J. Am. Chem. Soc. 2012, 134, 5863.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVChu70%3D&md5=d98c8d5e584225f53c6f6f04371654a1CAS | 22400976PubMed |

[23]  S. G. Lias, L. F. Liebman, R. D. Levin, J. Phys. Chem. Ref. Data 1984, 13, 695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFOksw%3D%3D&md5=6bd2212d9c124cc36bcd4ed532246cd2CAS |

[24]  A. G. Harrison, Mass Spectrom. Rev. 1997, 16, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXosVCquw%3D%3D&md5=66bc03b84fe8abe1e926ff472f13fe8fCAS |

[25]  G. Bouchoux, J. Y. Salpin, Eur. J. Mass Spectrom. 2003, 9, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFais7g%3D&md5=d03658fef73a8422053210f7f36e2901CAS |

[26]  G. Bouchoux, D. A. Buisson, C. Colas, M. Sablier, Eur. J. Mass Spectrom. 2004, 10, 977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs12mtbc%3D&md5=c4f0cd007afcc750f5f18e7a413b613eCAS |

[27]  G. Bouchoux, S. Desaphy, S. Bourcier, C. Malosse, R. N. B. Bimbong, J. Phys. Chem. B 2008, 112, 3410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFegs7w%3D&md5=f223ed6621e7dc27e1711a9f7c61d65dCAS | 18288831PubMed |

[28]  S. Desaphy, C. Malosse, G. Bouchoux, J. Mass Spectrom. 2008, 43, 116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFKnurk%3D&md5=b6954bb4723c2f16cfe5649e0b3ffa0bCAS | 17726660PubMed |

[29]  D. E. Bacelo, J. Phys. Chem. A 2002, 106, 11190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFKksrs%3D&md5=0008a0f94661a51765914aadc4d33534CAS |

[30]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian, Inc.: Wallingford CT).

[31]  X. Xu, W. A. Goddard, Proc. Natl. Acad. Sci. USA 2004, 101, 2673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlWiuro%3D&md5=0f6c7e36cb7c29d4031557547790339cCAS | 14981235PubMed |

[32]  S. M. Smith, A. N. Markevitch, D. A. Romanov, X. Li, R. J. Levis, H. B. Schlegel, J. Phys. Chem. A 2004, 108, 11063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFWitr8%3D&md5=8f4129ce4d401fb4d77b6c46fd55b923CAS |