Kinetic Method Analysis of the Effect of cis- and trans-Hydroxylation on the Proton Affinity of Proline
Vinod Kanchi A and Joong-Won Shin A BA Division of Science, Governors State University, University Park, IL 60484-0975, USA.
B Corresponding author. Email: jshin@govst.edu
Australian Journal of Chemistry 68(10) 1518-1523 https://doi.org/10.1071/CH15047
Submitted: 31 January 2015 Accepted: 17 March 2015 Published: 8 May 2015
Abstract
Proton affinities of proline and hydroxyproline were measured using the Cooks’ kinetic method. The measurements show that hydroxylation increases the proton affinity, which is consistent with X3LYP computation results. This work supports findings from a previous study (S. Mezzache et al., Rapid Commun. Mass Spectrom. 2005, 19, 2279) that modification of proline increases its proton affinity, but it does not provide compelling evidence for the prediction in the same study that proton affinity of the molecule is substantially influenced by intramolecular interactions involving the proton. PBE1PBE calculations suggest that isotropic polarizability rather than intramolecular hydrogen-bonding interactions provides a more suitable diagnosis for trends in proton affinity changes associated with modifications.
References
[1] S. A. McLuckey, D. Cameron, R. G. Cooks, J. Am. Chem. Soc. 1981, 103, 1313.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsFKisrw%3D&md5=666ef07eea24b79cfa450d3e15ae0d5cCAS |
[2] M. J. Nold, B. A. Cerda, C. Wesdemiotis, J. Am. Soc. Mass Spectrom. 1999, 10, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXosFOj&md5=808a741f5dca6125c860e2bd5e2ddf07CAS | 9888180PubMed |
[3] K. B. Green-Church, P. A. Limbach, J. Am. Soc. Mass Spectrom. 2000, 11, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFSlu70%3D&md5=ed89d00cb70af4c00f3204b112aef29fCAS | 10631661PubMed |
[4] C. Afonso, F. Modeste, P. Breton, F. Fournier, J.-C. Tabet, Eur. J. Mass Spectrom. 2000, 6, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVaguw%3D%3D&md5=e38874c8f5f8954fd9b335e978541228CAS |
[5] J. Shen, J. Ren, Int. J. Mass Spectrom. 2012, 316–318, 147.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. P. Tan, J. Ren, J. Am. Soc. Mass Spectrom. 2007, 18, 188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wgsrk%3D&md5=9e58c3763102d47e9bea59cccfcbb139CAS | 17067812PubMed |
[7] J. Ren, J. P. Tan, R. T. Harper, J. Phys. Chem. A 2009, 113, 10903.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFehu73L&md5=53802a8819a9cf889abd5d11ed246497CAS | 19754094PubMed |
[8] K. K. Morishetti, B. D. S. Huang, J. M. Yates, J. Ren, J. Am. Soc. Mass Spectrom. 2010, 21, 603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFyntbo%3D&md5=30c3dc6ea65200b8b7b650d2d618876aCAS | 20106677PubMed |
[9] B. A. Cerda, C. Wesdemiotis, J. Am. Chem. Soc. 1995, 117, 9734.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFOks7s%3D&md5=4dfc0b98e78ab5d6cd85749a53208b3cCAS |
[10] B. A. Cerda, C. Wesdemiotis, J. Am. Chem. Soc. 1996, 118, 11884.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmslaqurw%3D&md5=c959c534b5c2334d0f8fffa52eac5238CAS |
[11] T. T. Dang, E. L. Motell, M. J. Travers, E. P. Clifford, G. B. Ellison, C. H. DePuy, V. M. Bierbaum, Int. J. Mass Spectrom. Ion Processes 1993, 123, 171.
| Crossref | GoogleScholarGoogle Scholar |
[12] F. C. Gozzo, M. N. Eberlin, J. Mass Spectrom. 2001, 36, 1140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFOqtLs%3D&md5=7f666dbec5fbe087052e08ea66ec3a35CAS | 11747108PubMed |
[13] X. Cheng, Z. Wu, C. Fenselau, J. Am. Chem. Soc. 1993, 115, 4844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslejtbY%3D&md5=d45bb32463f09467498064b3735f87a1CAS |
[14] P. B. Armentrout, J. Am. Soc. Mass Spectrom. 2000, 11, 371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFemsbY%3D&md5=659da527b28e30988da5b9f6962f1be1CAS | 10790840PubMed |
[15] A. F. Kuntz, A. W. Boynton, G. A. David, K. E. Coyler, J. C. Poutsma, J. Am. Soc. Mass Spectrom. 2002, 13, 72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1ant7w%3D&md5=095c9ed8d06efd319cd40b500b6121bcCAS | 11777201PubMed |
[16] S. Mezzache, C. Afonso, C. Pepe, P. Karoyan, F. Fournier, J.-C. Tabet, Rapid Commun. Mass Spectrom. 2003, 17, 1626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFGmu7o%3D&md5=f7e888055d9ba97d84a967c6496a456aCAS | 12845589PubMed |
[17] C. Afonso, F. Modeste, P. Breton, F. Fournier, J.-C. Tabet, Eur. J. Mass Spectrom. 2000, 6, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVaguw%3D%3D&md5=e38874c8f5f8954fd9b335e978541228CAS |
[18] Z. Wu, C. Fenselau, Rapid Commun. Mass Spectrom. 1994, 8, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtFGhur0%3D&md5=82763dffb90c5d6d85d58d1dc1b6a8ebCAS |
[19] V. Addario, Y. Guo, I. K. Chu, Y. Ling, G. Ruggerio, C. F. Rodriquez, A. C. Hopkinson, K. W. M. Siu, Int. J. Mass Spectrom. 2002, 219, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWksro%3D&md5=e651dcf398520377dd9823d5a2fa3142CAS |
[20] S. Mezzache, C. Pepe, P. Karoyan, F. Fournier, J.-C. Tabet, Rapid Commun. Mass Spectrom. 2005, 19, 2279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosValu7w%3D&md5=0241f0c7a2bca6b750716b0720de2f07CAS | 16021616PubMed |
[21] C. Muetterties, A. Janiga, K. T. Huynh, M. G. Pisano, V. T. Tripp, D. D. Young, J. C. Poutsma, Int. J. Mass Spectrom. 2014, 369, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsrrJ&md5=7899c1782d7945d3a102b6d43d3ce974CAS |
[22] Y. Chen, M. T. Rodgers, J. Am. Chem. Soc. 2012, 134, 5863.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVChu70%3D&md5=d98c8d5e584225f53c6f6f04371654a1CAS | 22400976PubMed |
[23] S. G. Lias, L. F. Liebman, R. D. Levin, J. Phys. Chem. Ref. Data 1984, 13, 695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFOksw%3D%3D&md5=6bd2212d9c124cc36bcd4ed532246cd2CAS |
[24] A. G. Harrison, Mass Spectrom. Rev. 1997, 16, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXosVCquw%3D%3D&md5=66bc03b84fe8abe1e926ff472f13fe8fCAS |
[25] G. Bouchoux, J. Y. Salpin, Eur. J. Mass Spectrom. 2003, 9, 391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFais7g%3D&md5=d03658fef73a8422053210f7f36e2901CAS |
[26] G. Bouchoux, D. A. Buisson, C. Colas, M. Sablier, Eur. J. Mass Spectrom. 2004, 10, 977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs12mtbc%3D&md5=c4f0cd007afcc750f5f18e7a413b613eCAS |
[27] G. Bouchoux, S. Desaphy, S. Bourcier, C. Malosse, R. N. B. Bimbong, J. Phys. Chem. B 2008, 112, 3410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFegs7w%3D&md5=f223ed6621e7dc27e1711a9f7c61d65dCAS | 18288831PubMed |
[28] S. Desaphy, C. Malosse, G. Bouchoux, J. Mass Spectrom. 2008, 43, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFKnurk%3D&md5=b6954bb4723c2f16cfe5649e0b3ffa0bCAS | 17726660PubMed |
[29] D. E. Bacelo, J. Phys. Chem. A 2002, 106, 11190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFKksrs%3D&md5=0008a0f94661a51765914aadc4d33534CAS |
[30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian, Inc.: Wallingford CT).
[31] X. Xu, W. A. Goddard, Proc. Natl. Acad. Sci. USA 2004, 101, 2673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlWiuro%3D&md5=0f6c7e36cb7c29d4031557547790339cCAS | 14981235PubMed |
[32] S. M. Smith, A. N. Markevitch, D. A. Romanov, X. Li, R. J. Levis, H. B. Schlegel, J. Phys. Chem. A 2004, 108, 11063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFWitr8%3D&md5=8f4129ce4d401fb4d77b6c46fd55b923CAS |