Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Co1Cu2(BHTC)2 and Its Application in Adsorption Desulfurization

Qiming Li A B C and Fang Li A
+ Author Affiliations
- Author Affiliations

A College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University Fushun 113001, China.

B Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China.

C Corresponding author. Email: lqm_dicp@163.com

Australian Journal of Chemistry 68(10) 1524-1528 https://doi.org/10.1071/CH14733
Submitted: 28 December 2014  Accepted: 19 March 2015   Published: 15 May 2015

Abstract

A heterobimetallic metal–organic framework Co1Cu2(BHTC)2 was successfully synthesized based on biphenyl-3,4′, 5-tricarboxylate (H3BHTC). The adsorption desulfurization capability of Co1Cu2(BHTC)2 was investigated in the experiment. Scanning electron microscopy and X-ray diffraction analyses show that Co1Cu2(BHTC)2 possesses a two-dimensional hexagonal morphology and an identical crystallographic structure to that of UMCM-150. Thermogravimetric analysis and Brunauer–Emmett–Teller (BET) analysis indicate that Co1Cu2(BHTC)2 has excellent thermal stability and its BET area can reach up to 2715 m2 g–1. The adsorption desulfurization experiments were conducted based on a in-house built fixed bed at room temperature and atmospheric pressure. The sulfur capacities of the adsorbents were calculated according to breakthrough curves. Compared with UMCM-150 [Cu3(BHTC)2], Co1Cu2(BHTC)2 exhibits different adsorptive desulfurization properties. The experimental results indicate that Cu3(BHTC)2 has a higher sulfur capacity than Co1Cu2(BHTC)2 although the specific surface area of Co1Cu2(BHTC)2 is higher than that of [Cu3(BHTC)2], which can be ascribed to different open metal sites.


References

[1]  A. Shamsi, Catal. Today 2009, 139, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFaht7%2FN&md5=be832972f8797bb84ee1d63508188e6dCAS |

[2]  B. D. Gould, O. A. Baturina, K. E. Swider-Lyons, J. Power Sources 2009, 188, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFamurc%3D&md5=c376131460f996b75fde594b5ea8b46eCAS |

[3]  C. Song, Catal. Today 2003, 86, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVCnsLc%3D&md5=5f97867175887f805829d86b2b23eef3CAS |

[4]  I. Mochida, K. Sakanishi, X. Ma, S. Nagao, T. Isoda, Catal. Today 1996, 29, 185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlSltrk%3D&md5=d2cf5ce720b272c12d460725a0a7020cCAS |

[5]  A. J. Hernández-Maldonado, F. H. Yang, G. Qi, R. T. Yang, Appl. Catal., B 2005, 56, 111.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. T. Yang, A. J. Hernández-Maldonado, F. H. Yang, Science 2003, 301, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVGqsLs%3D&md5=81f53ab6d7ccd94acc6dd4712315eb7bCAS | 12843388PubMed |

[7]  A. Zhou, X. Ma, C. Song, J. Phys. Chem. B 2006, 110, 4699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVOntbs%3D&md5=b760941d798fcac55edaa14d5c9897a5CAS | 16526705PubMed |

[8]  X.-L. Tang, L. Shi, Langmuir 2011, 27, 11999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGgt7bJ&md5=ddaeed30d7168c2cf377180a47f88a84CAS | 21870798PubMed |

[9]  G. Férey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar | 18197340PubMed |

[10]  S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem., Int. Ed. 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFShtLk%3D&md5=d0dae4b9d774ddfd7afca01b3ca5da06CAS |

[11]  C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem., Int. Ed. 2004, 43, 1466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisl2hsbo%3D&md5=0a0b4900cff1982c93073c37edd8fef6CAS |

[12]  U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 2006, 16, 626.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeitrc%3D&md5=58e3cd4b282def1550e2f697354e8577CAS |

[13]  K. A. Cychosz, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2009, 131, 14538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjtrfL&md5=a1cba34aca33a3ee2b8071ff3cf94f3aCAS | 19757809PubMed |

[14]  K. A. Cychosz, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 6938.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslamtb4%3D&md5=c40ddf0592a06d340caecba62e117919CAS | 18465854PubMed |

[15]  A. G. Wong-Foy, O. Lebel, A. J. Matzger, J. Am. Chem. Soc. 2007, 129, 15740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynu7vF&md5=3e6dad5ca62b1aad3534a471c52c956fCAS | 18052169PubMed |

[16]  C.-S. Lim, J. K. Schnobrich, A. G. Wong-Foy, A. J. Matzger, Inorg. Chem. 2010, 49, 5271.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslyms70%3D&md5=e4522e16591cf59159a4a62a74199a24CAS | 20455576PubMed |

[17]  Y. Li, F. H. Yang, G. Qi, R. T. Yang, Catal. Today 2006, 116, 512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlWmtbg%3D&md5=39b6ade1fe0b0389f952377b661452a4CAS |

[18]  F. Stallmach, S. Gröger, V. Künzel, J. Kärger, O. M. Yaghi, M. Hesse, U. Müller, Angew. Chem., Int. Ed. 2006, 45, 2123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1OgsLg%3D&md5=b2473d99863b74d079b98252a0038bffCAS |

[19]  Z. Y. Zhang, T. B. Shi, C. Z. Jia, W. J. Ji, Y. Chen, M. Y. He, Appl. Catal., B 2008, 82, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFKhurc%3D&md5=76fd54717e89e4ff765c86fcd2e4e390CAS |