Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Tetracarboxyl-Functionalized Ionic Liquid: Synthesis and Catalytic Properties

Miaona Feng A B , Guoying Zhao B , Hongling Gao A C and Suojiang Zhang B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

B Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

C Corresponding authors. Email: ghl@tju.edu.cn; Sjzhang@ipe.ac.cn

Australian Journal of Chemistry 68(10) 1513-1517 https://doi.org/10.1071/CH14720
Submitted: 18 December 2014  Accepted: 17 March 2015   Published: 30 April 2015

Abstract

Novel tetracarboxyl-functionalized 2,2′-biimidazolium-based ionic liquids (ILs) with different anions were synthesized in two steps from readily available and sustainable starting materials including ammonium acetate, glyoxal, and halogenated propionic acid. The functionalized IL exhibited higher catalytic activity towards the cycloaddition of CO2 to terminal epoxides. With propylene oxide as a substrate, the optimum yield of propylene carbonate reached 82.7 % at an initial CO2 pressure of 2.0 MPa for 4 h at 140°C. Moreover, the functionalized IL catalyst displayed a high stability and can be reused for at least five cycles without obvious loss of catalytic activity. The results provide a simple and economical way to synthesize multi-functionalized imidazolium-based ILs with versatile potential applications.


References

[1]  (a) M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSisr0%3D&md5=c3b8ca479882380ff5acca01fc340bdaCAS | 19629083PubMed |
      (b) D. M. D’Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. Sheldon, Chem. Commun. 2001, 2399.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Welton, Chem. Rev. 1999, 99, 2071.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Z.-Z. Yang, Y.-N. Zhao, L.-N. He, RSC Adv. 2011, 1, 545.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han, T. Wu, K. Ding, Angew. Chem. Int. Ed. 2007, 46, 7255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCqsLfE&md5=ecabf3850686f63622492404f2ee6c7eCAS |

[3]  G. A. Baker, S. N. Baker, S. Pandey, F. V. Bright, Analyst 2005, 130, 800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlKrurY%3D&md5=f050f26ba0199bdbaf11664fbacb4b5aCAS | 15912225PubMed |

[4]  Y. L. Gu, Q. H. Zhang, Z. Y. Duan, J. Zhang, S. G. Zhang, Y. Q. Deng, J. Org. Chem. 2005, 70, 7376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1ais7w%3D&md5=dd5cef1c65d55ea3942688b9a8c82d82CAS |

[5]  (a) K. S. Kim, D. Demberelnyamba, H. Lee, Langmuir 2004, 20, 556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWisbjF&md5=4aa7c58719fed046f01b674dab4f2dfbCAS | 15773074PubMed |
      (b) X.-L. Meng, Y. Nie, J. Sun, W.-G. Cheng, J.-Q. Wang, H.-Y. He, S.-J. Zhang, Green Chem. 2014, 16, 2771.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Sun, S. Zhang, W. Cheng, J. Ren, Tetrahedron Lett. 2008, 49, 3588.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L.-F. Xiao, D.-W. Lv, D. Su, W. Wu, H.-F. Li, J. Clean. Prod. 2014, 67, 285.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  H. Xue, Y. Gao, B. Twamley, J. M. Shreeve, Chem. Mater. 2005, 17, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVegtLbF&md5=bea64ed07d66a3bd7bc761218f0e97a7CAS |

[7]  W. Wu, X. Sheng, Y. Qin, L. Qiao, Y. Miao, X. Wang, F. Wang, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2346.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsFCisL4%3D&md5=4db33fe26509fda207e25326ec830e71CAS |

[8]  J. Sun, L.-J. Han, W.-G. Cheng, J.-Q. Wang, X.-P. Zhang, S.-J. Zhang, ChemSusChem 2011, 4, 502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Wkt7o%3D&md5=bb529680421bf0aa26464f428f2ba391CAS | 21275061PubMed |

[9]  J. C. Xiao, J. M. Shreeve, J. Org. Chem. 2005, 70, 3072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVCktrg%3D&md5=2782db0cd88ff8c3cdc156f97b62797bCAS | 15822966PubMed |

[10]  (a) Z. Fei, T. J. Geldbach, R. Scopelliti, P. J. Dyson, Inorg. Chem. 2006, 45, 6331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVyqt70%3D&md5=0a8611f807f037a9a347e9fed5e983f8CAS | 16878943PubMed |
      (b) W. Shen, L.-M. Wang, H. Tian, J. Tang, J.-J. Yu, J. Fluor. Chem. 2009, 130, 522.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. Sun, L. Wang, S. Zhang, Z. Li, X. Zhang, W. Dai, R. Mori, J. Mol. Catal. A: Chem. 2006, 256, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslGmt7c%3D&md5=22e687d341d409970f32a7174aa9b31dCAS |

[12]  (a) T. Takahashi, T. Watahiki, S. Kitazume, H. Yasuda, T. Sakakura, Chem. Commun. 2006, 1664.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Han, H.-J. Choi, S.-J. Choi, B. Liu, D.-W. Park, Green Chem. 2011, 13, 1023.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. Zhou, S. Hu, X. Ma, S. Liang, T. Jiang, B. Han, J. Mol. Catal. A: Chem. 2008, 284, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtl2ht7Y%3D&md5=b41bb83b28dbde919eed50801fcd719aCAS |

[14]  X.-L. Meng, Y. Nie, J. Sun, W.-G. Cheng, J.-Q. Wang, H.-Y. He, S.-J. Zhang, Green Chem. 2014, 16, 2771.
         | 1:CAS:528:DC%2BC2cXmsFahsbY%3D&md5=55fe3a74e3efc54c5204d912fa2e7e7bCAS |