Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Tailoring of Morphology and Optical Properties of Bishydrazone-Capped ZnSe Nanorods

S. Sasi Florence A E , M. Umadevi B E , D. Lawrence Arockiasamy C and Rita John D
+ Author Affiliations
- Author Affiliations

A Department of Physics, Jazan University, Jizan 114, Saudi Arabia.

B Department of Physics, Mother Teresa Women’s University, Kodaikanal 624101, Tamilnadu, India.

C King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.

D Department of Theoretical Physics, University of Madras, Chennai 600025, Tamilnadu, India.

E Corresponding authors. Email: sshanmugaraj@jazanu.edu.sa; ums10@yahoo.com

Australian Journal of Chemistry 68(10) 1508-1512 https://doi.org/10.1071/CH14672
Submitted: 24 November 2014  Accepted: 17 March 2015   Published: 21 April 2015

Abstract

Hydrazone derivatives containing heterocyclic moieties have interesting ligational features. Various heterocyclic base ligands have been gradually used to synthesize nanomaterials; however, adapting task-specific ligand systems to guide the synthesis path towards desirable nanostructures and morphologies is rare. In this article, bishydrazone was used as a ligand to purposely modify the morphological structure of the zinc selenide nanostructures via wet chemical reaction method at room temperature. The as-prepared ZnSe nanorods are relatively uniform with an average diameter of ~100 nm at the core and top diameter of 8–10 nm. UV-Vis spectrum of the products displayed absorption maxima at 390 nm. Therefore, the obtained ZnSe nanorods may have promising applications in blue emitters, catalysts, and gas sensors. The presence of bishydrazone in the ZnSe nanorods is confirmed by the Fourier transform infrared spectrum. It would be expected that bishydrazone could be used to prepare other nanoscale metal selenides with special morphologies and improved properties on a large scale.


References

[1]  U. O. Ozmen, G. Olgun, Spectrochim. Acta, Part A 2008, 70, 641.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  E. I. Pleskushkina, A. N. Nikolaevskii, T. A. Filippenko, J. Appl. Chem. 2001, 74, 792.
         | 1:CAS:528:DC%2BD3MXovFeitLc%3D&md5=2bc305d2fa37245b2518eb0f06043399CAS |

[3]  M. C. Rodrìguez-Argüelles, M. Belicchi Ferrari, F. Bisceglie, C. Pelizzi, G. Pelosi, S. Pinelli, M. Sassi, J. Inorg. Biochem. 2004, 98, 313.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  F. Lions, K. V. Martin, J. Am. Chem. Soc. 1958, 80, 3858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXivFSrtg%3D%3D&md5=71e202beeb00ba07a7824b7441654093CAS |

[5]  J. F. Geldard, F. Lions, J. Am. Chem. Soc. 1962, 84, 2262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktlCmtb8%3D&md5=99742a731566acf49898203d7fe4fe37CAS |

[6]  J. F. Geldard, F. Lions, Inorg. Chem. 1963, 2, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXlslyrsA%3D%3D&md5=0dfe4378e7001e69eaedc99e62904111CAS |

[7]  R. W. Green, P. S. Hallman, F. Lions, Inorg. Chem. 1964, 3, 376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkvFCgsg%3D%3D&md5=1b793c3b93b273128835f9936c1ccd56CAS |

[8]  J. F. Geldard, F. Lions, Inorg. Chem. 1965, 4, 414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvVyrtA%3D%3D&md5=ebf7f4205dc22a203012ed80fdc31fe0CAS |

[9]  M. Navaneethan, J. Archana, K. D. Nisha, S. Ponnusamy, M. Arivanandhan, Y. Hayakawa, C. Muthamizhcelvan, Mater. Lett. 2012, 66, 276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagsbfL&md5=b6b007c7488d9e1ad6213f6e19ef8fd8CAS |

[10]  H. Wang, T. Tian, S. Yan, W. Huang, Z. Xiao, J. Cryst. Growth 2009, 311, 3787.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVagtbs%3D&md5=202df84aaa5c7b34d49d4968c5e22c4dCAS |

[11]  M. Navaneethan, J. Archana, Y. Hayakawa, CrystEngComm 2013, 15, 8246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCrsLjP&md5=41a3e42592e59c46151b621af53b6030CAS |

[12]  W. Zhou, J. Wu, H. Yang, Nano Lett. 2013, 13, 2870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFyrurw%3D&md5=466f3d2885ca0843c06768e0fb594e9dCAS | 23646987PubMed |

[13]  L.-J. Zhang, X.-C. Shen, H. Liang, J.-T. Yao, J. Phys. Chem. C 2010, 114, 21921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyitbjE&md5=498d15be5b03c8ab8aea0404e9019b93CAS |

[14]  J. Archana, M. Navaneethan, S. Ponnusamy, Y. Hayakawa, C. Muthamizhcelvan, Mater. Lett. 2012, 81, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1CqtLs%3D&md5=f029694b33a2da636ec6ba5518474ffaCAS |

[15]  J. Archana, M. Navaneethan, Y. Hayakawa, S. Ponnusamy, C. Muthamizhchelvan, Mater. Lett. 2012, 47, 1892.
         | 1:CAS:528:DC%2BC38XmvVKltrg%3D&md5=d76efe56dfc18b59c2608a1166f866c3CAS |

[16]  J. Archana, M. Navaneethan, S. Ponnusamy, Y. Hayakawa, C. Muthamizhcelvan, Mater. Lett. 2010, 64, 2094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVyks7Y%3D&md5=690b50a394c2d340143dfe845e24a85dCAS |

[17]  S. S. Florence, R. John, D. L. Arockiasamy, M. Umadevi, Mater. Lett. 2012, 86, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yltrjL&md5=498ff1ff27082e14a350571028eb1a56CAS |

[18]  S. S. Florence, M. Umadevi, R. John, D. L. Arockiasamy, Mater. Lett. 2013, 108, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. Nose, H. Fujita, T. Omata, Y. S. Otsuka, H. Nakamura, H. Maeda, J. Lumin. 2007, 126, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks12gt74%3D&md5=325a096904a53c45be29588402a2e9eeCAS |

[20]  M. Navaneethan, J. Archana, K. D. Nisha, Y. Hayakawa, S. Ponnusamy, C. Muthamizhchelvan, J. Alloys Compd. 2010, 506, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyqsrbE&md5=c7ac09fb5744287c72e0f7fc2d2e1285CAS |

[21]  B. Murukan, B. S. Kumari, K. Mohanan, J. Coord. Chem. 2007, 60, 1607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFCrurc%3D&md5=3c8a936bef379229f6764c9ee2563956CAS |

[22]  J. Liu, D. Xue, Thin Solid Films 2009, 517, 4814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlantbw%3D&md5=d96eb313c2b0d6ea68000fc367e23447CAS |

[23]  G. Lu, H. An, Y. Chen, J. Huang, H. Zhang, B. Ziang, J. Cryst. Growth 2005, 274, 530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFymtg%3D%3D&md5=db57f057fb29842a68b506efe1703258CAS |

[24]  M. G. Syed Basheer Ahamed, V. S. Nagarethinam, A. R. Balu, A. Thayumanavan, K. R. Murali, C. Sanjeeviraja, Cryst. Res. Technol. 2010, 45, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSjtrc%3D&md5=1b333f931e31bee656e77e53eee0c15aCAS |

[25]  D. Sarigiannis, J. D. Peck, G. Kioseoglou, A. Petrou, T. Mountziaris, Appl. Phys. Lett. 2002, 80, 4024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvF2itr4%3D&md5=17f9a61db7082f9298f96d3565b53525CAS |

[26]  B. Y. Geng, Q. B. Du, X. W. Liu, J. Z. Ma, X. W. Wei, L. D. Zhang, Appl. Phys. Lett. 2006, 89, 033115.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. Y. Yang, W. J. Wang, B. Song, R. Wu, J. Li, Y. F. Sun, F. Shang, J. Cryst. Growth 2010, 312, 2852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCht7jI&md5=395a1fca74b102d729bf424039dc1f5eCAS |