A New Method for the Label-Free Detection of Vascular Endothelial Growth Factor Based on DNAzymes
Zhuwu Lv A , Ke Wang B and Xiaolu Zhang C DA Department of Obstetrics and Gynecology, Wuxi People’s Hospital affiliated with Nanjing Medical University, Wuxi, Jiangsu, China.
B Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China.
C Department of Neurosurgery, Wuxi People’s Hospital affiliated with Nanjing Medical University, Wuxi, Jiangsu, China.
D Corresponding author. Email: doczhangxiaolu@gmail.com
Australian Journal of Chemistry 69(1) 85-88 https://doi.org/10.1071/CH14705
Submitted: 10 December 2014 Accepted: 13 June 2015 Published: 17 July 2015
Abstract
The possibility of performing reliable cancer diagnosis even before any symptoms of disease appears is crucial for increasing therapeutic treatment success and patient survival rates. Herein, an ultrasensitive colorimetric sandwich sensor for vascular endothelial growth factor (VEGF) detection is introduced. The peroxidase-like DNAzyme catalyzes the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid, which generates a blue–green colorimetric signal. This method can detect VEGF at a concentration as low as 10 nM. This strategy will be a promising tool for bioanalytical and clinical applications.
References
[1] D. Koirala, C. Ghimire, C. Bohrer, Y. Sannohe, H. Sugiyama, H. Mao, J. Am. Chem. Soc. 2013, 135, 2235.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOrs78%3D&md5=39a7d7432986dcecc80c0ca09ebb76b3CAS | 23327686PubMed |
[2] X. Liu, R. Freeman, E. Golub, I. Willner, ACS Nano 2011, 5, 7648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFelu73O&md5=8315671cd1c68716d8915cb65aed7ad1CAS | 21866963PubMed |
[3] G. Pelossof, R. Tel-Vered, X.-Q. Liu, I. Willner, Chem. – Eur. J. 2011, 17, 8904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotl2qt78%3D&md5=07a0152af4f6ae4e5900599b39b6470aCAS | 21726008PubMed |
[4] R. Freeman, X. Liu, I. Winner, J. Am. Chem. Soc. 2011, 133, 11597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFyltrY%3D&md5=12317c864de96095c9167db2bee42e64CAS | 21678959PubMed |
[5] E. Golub, R. Freeman, A. Niazov, I. Willner, Analyst (Cambridge, UK) 2011, 136, 4397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12itb3E&md5=6475c39b1d048b8a70b38426156f85aeCAS |
[6] H. Yaku, T. Murashima, D. Miyoshi, N. Sugimoto, Chem. Commun. 2010, 46, 5740.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFeluro%3D&md5=02a23a72fc2b4b8c5bbe922b54af8083CAS |
[7] C.-H. Lu, X.-J. Qi, R. Orbach, H.-H. Yang, I. Mironi-Harpaz, D. Seliktar, I. Willner, Nano Lett. 2013, 13, 1298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVyjur4%3D&md5=9302797d357172906a9213aca513e887CAS | 23421921PubMed |
[8] M. S. Ghadge, P. P. Naik, B. P. Tiwari, R. M. Hegde, T. J. Matale, Indian J. Clin. Biochem. 2012, 27, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVCqtr4%3D&md5=35e1238aa3843f483cbbadb4fd690e4aCAS | 23277720PubMed |
[9] Y. Zhang, W. Liu, S. Ge, M. Yan, S. Wang, J. Yu, N. Li, X. Song, Biosens. Bioelectron. 2013, 41, 684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2qt7nL&md5=977b75eb7a7a134a3a9af81c4b88c390CAS | 23062558PubMed |
[10] O. S. Kwon, S. J. Park, J. Jang, Biomaterials 2010, 31, 4740.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksV2qsr0%3D&md5=f4a77d3576827485f794e514bc76611aCAS | 20227108PubMed |
[11] X. Wang, X. Xu, L. Tang, S. Song, C. Fan, Int. J. Mol. Sci. 2007, 8, 61.
| Crossref | GoogleScholarGoogle Scholar |
[12] H.-S. Lee, K. S. Kim, C.-J. Kim, S. K. Hahn, M.-H. Jo, Biosens. Bioelectron. 2009, 24, 1801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2ruro%3D&md5=ed14df08cd585c4852c0cc9280ab536bCAS | 18835770PubMed |
[13] R. Freeman, J. Girsh, A. F.-J. Jou, J.-A. Ho, T. Hug, J. Dernedde, I. Willner, Anal. Chem. 2012, 84, 6192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslGitrs%3D&md5=9e1341f0ac8563569d217ca9e8bc5564CAS | 22746189PubMed |
[14] O. S. Kwon, S. J. Park, J. Jang, Biomaterials 2010, 31, 4740.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksV2qsr0%3D&md5=f4a77d3576827485f794e514bc76611aCAS | 20227108PubMed |
[15] H. Cho, E.-C. Yeh, R. Sinha, T. A. Laurence, J. P. Bearinger, L. P. Lee, ACS Nano 2012, 6, 7607.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFyqtrnM&md5=35dc2e4652f24ed59b5f6f0284405f62CAS | 22880609PubMed |
[16] C. Mita, K. Abe, T. Fukaya, K. Ikebukuro, Materials (Basel) 2014, 7, 1046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWgsrjJ&md5=43f64b041b4e631513117463c0cb6ea0CAS |
[17] W. Cheng, S. Ding, Q. Li, T. Yu, Y. Yin, H. Ju, G. Ren, Biosens. Bioelectron. 2012, 36, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFams70%3D&md5=7bd6913e161d9471e9940c128bd23c74CAS | 22538057PubMed |
[18] Y. Nonaka, K. Abe, K. Ikebukuro, Electrochemistry 2012, 80, 363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvV2qsbw%3D&md5=41844aafb8a01eea89852745bb6ee5a5CAS |