Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Urothermal Syntheses, Crystal Structures, and Luminescent Properties of Two New ZnII Compounds Constructed by the Mixed Ligands of 1,2,4-Triazole and 1,4-Naphthalenedicarboxylic Acid or 2,6-Naphthalenedicarboxylic Acid

Haiyan Liu A , Xufeng Meng A , Lihui Zhang B and Anqiang Jia C D
+ Author Affiliations
- Author Affiliations

A College of Sciences, Agricultural University of Hebei, Baoding 071001, China.

B College of Plant Protection, Agricultural University of Hebei, Baoding 071001, China.

C Rural and Urban Construction College of Hebei Agricultural University, Baoding 071001, China.

D Corresponding author. Email: anqiang_jia3157@163.com

Australian Journal of Chemistry 68(8) 1299-1304 https://doi.org/10.1071/CH14669
Submitted: 21 November 2014  Accepted: 16 January 2015   Published: 26 March 2015

Abstract

Under urothermal conditions, the self-assembly of ZnII ions, 1,2,3-triazole, and two isomeric dicarboxylate ligands (1,4-H2ndc and 2,6-H2ndc) afforded two new metal–organic frameworks, namely [Zn(1,4-ndc)0.5(taz)]n·n(e-urea) (1) and [Zn(2,6-ndc)0.5(taz)]n·n(H2O)·n(e-urea) (2) (1,4-H2ndc = 1,4-naphthalenedicarboxylic acid; 2,6-H2ndc = 2,6-naphthalenedicarboxylic acid; Htaz = 1,2,4-triazole; e-urea = ethyleneurea), which were further determined by single-crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction analyses, and IR spectra. Compound 1 features a 3D pillar-layered framework with 6-connected pcu topology (pcu = α-Po), and compound 2 also features a 3D pillar-layered framework with 6-connected pcu topology. In addition, the thermal stabilities and solid-state photoluminescent properties of compounds 1 and 2 were also studied.


References

[1]  (a) P. Dechambenoit, J. R. Long, Chem. Soc. Rev. 2011, 40, 3249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWkurY%3D&md5=c9f37ee5ff3a9929d3333660776dde85CAS | 21298169PubMed |
      (b) M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Zhao, D. J. Timmons, D. Yuan, H. C. Zhou, Acc. Chem. Res. 2011, 44, 123.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Li, J. Tao, R. B. Huang, L. S. Zheng, Inorg. Chem. 2012, 51, 5988.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) L. H. Jia, R. Y. Li, Z. M. Duan, S. D. Jiang, B. W. Wang, Z. M. Wang, S. Gao, Inorg. Chem. 2011, 50, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ksLjJ&md5=c468264b3c1057d9091b4ec49ad4a5caCAS | 21126016PubMed |
      (b) X. Zhang, Y. Y. Huang, Q. P. Lin, J. Zhang, Y. G. Yao, Dalton Trans. 2013, 42, 2294.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. P. Suh, H. J. Park, T. K. Prased, D. W. Lim, Chem. Rev. 2012, 112, 782.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. T. He, J. Y. Tian, S. Y. Liu, G. F. Ouyang, J. P. Zhang, X. M. Chen, Chem. Sci 2013, 4, 351.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) Z. Q. Jiang, G. Y. Jiang, F. Wang, Z. Zhao, J. Zhang, Chem. – Eur. J. 2012, 18, 10525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFCrt7o%3D&md5=6ec3e3bb90c7165bc567b2c5d65d1ae1CAS | 22782784PubMed |
      (b) G. Akiyama, R. Matsuda, H. Sato, A. Hori, M. Takata, S. Kitagawa, Microporous Mesoporous Mater. 2012, 157, 89.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Liu, J. R. Li, W. M. Verdegaal, T. F. Liu, H. C. Zhou, Chem. – Eur. J. 2013, 19, 5637.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. P. He, Y. X. Tan, J. Zhang, Inorg. Chem. 2013, 52, 12758.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) T. Ahnfeldt, N. Guillou, D. Gunzelmann, I. Margiolaki, T. Loiseau, G. Ferey, J. Senker, N. Stock, Angew. Chem. Int. Ed. 2009, 48, 5163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVens7o%3D&md5=a0df40f9aefe69e362fd0b7365679cadCAS |
      (b) M. Yoon, R. Sriambalaji, M. Kim, Chem. Rev. 2012, 112, 1196.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Q. Chen, W. Xue, J. B. Lin, R. B. Lin, M. H. Zeng, X. M. Chen, Dalton Trans. 2012, 41, 4199.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. Zhang, Y. Y. Huang, J. K. Cheng, Y. G. Yao, J. Zhang, F. Wang, CrystEngComm 2012, 14, 4843.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamurg%3D&md5=2b75ad77141fdd7365ac7d2bfc21afa0CAS | 19384441PubMed |
      (b) H. Yang, F. Wang, Y. X. Tan, T. H. Li, J. Zhang, Chem. Asian J. 2012, 7, 1069.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Yang, J. F. Ma, Y. Y. Liu, S. R. Batten, CrystEngComm 2009, 11, 151.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. B. Fu, S. M. Hu, X. T. Wu, CrystEngComm 2011, 13, 6007.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. H. Noh, Y. J. Choi, Y. K. Ryu, Y. A. Lee, O. S. Jung, CrystEngComm 2009, 11, 2371.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) Y. P. He, Y. X. Tan, J. Zhang, Chem. Commun. 2013, 49, 11323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCqtbbP&md5=dfe7cf3531b4b0ff9ef8d21070a33aedCAS |
      (b) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O. Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Q. Chen, S. J. Liu, Y. W. Li, G. R. Li, K. H. He, Z. Chang, X. H. Bu, CrystEngComm 2013, 15, 1613.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Q. Wang, S. M. Cohen, Chem. Soc. Rev. 2009, 38, 1315.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. D. Lin, J. W. Cheng, S. W. Du, Cryst. Growth Des. 2008, 8, 3345.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) J. X. Yang, Y. Y. Qin, J. K. Cheng, Y. G. Yao, Cryst. Growth Des. 2014, 14, 1047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpt1Ojtw%3D%3D&md5=baaa909b9f7fff9e6fc7b3fc36555a02CAS |
      (b) F. Guo, B. Y. Zhu, M. L. Liu, X. L. Zhang, J. Zhang, J. P. Zhao, CrystEngComm 2013, 15, 6191.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Guo, B. Y. Zhu, G. L. Xu, M. M. Zhang, X. L. Zhang, J. Zhang, J. Solid State Chem. 2013, 199, 42.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. L. Xu, F. Guo, Inorg. Chem. Commun. 2013, 27, 146.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G. B. Yang, Z. H. Sun, Inorg. Chem. Commun. 2013, 29, 94.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) X. H. Lou, C. Xu, H. M. Li, Z. J. Zhang, H. Zhang, J. Inorg. Organomet. Polym. Mater. 2013, 23, 659.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) D. C. Hou, G. Y. Jiang, H. R. Fu, Z. Zhao, J. Zhang, CrystEngComm 2013, 15, 9499.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J. Zhang, J. T. Bu, S. M. Chen, T. Wu, S. T. Zheng, Y. G. Chen, R. A. Nieto, P. Y. Feng, X. H. Bu, Angew. Chem. Int. Ed. 2010, 49, 8876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmsbfF&md5=dc2dd1c0fc27c214b0bf5a83fed55395CAS |
      (b) Z. Q. Jiang, G. Y. Jiang, D. C. Hou, F. Wang, Z. Zhao, J. Zhang, CrystEngComm 2013, 15, 315.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. L. Dong, P. P. Zhou, H. M. Liu, J. Inorg. Organomet. Polym. Mater. 2014, 24, 874.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. H. Lou, H. M. Li, Q. T. Li, W. J. Du, C. Xu, Chin. J. Struct. Chem. 2014, 33, 597.
      (e) C. H. Zhan, F. Wang, Y. Kang, J. Zhang, Inorg. Chem. 2012, 51, 523.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) E. Yang, H. Y. Li, Z. S. Liu, Q. D. Ling, Inorg. Chem. Commun. 2013, 30, 152.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) T. Z. Liu, D. B. Luo, D. G. Xu, H. M. Zeng, Z. E. Lin, Inorg. Chem. Commun. 2013, 29, 110.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) Z. S. Liu, E. Yang, Y. Kang, J. Zhang, Inorg. Chem. Commun. 2011, 14, 355.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  F. Wang, Y. X. Tan, J. Zhang, Solid State Sci. 2012, 14, 1263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gks7vN&md5=1d366ade952f88b479989697877af6bfCAS |

[10]  (a) F. L. Hu, H. H. Zou, X. B. Zhao, Y. Mi, C. L. Luo, Y. X. Wang, CrystEngComm 2013, 15, 1068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlSluw%3D%3D&md5=4821a24d98dcdaf3811fddd69ed95252CAS |
      (b) H. Wu, H. Y. Lin, J. Yang, B. Liu, J. F. Ma, Y. Y. Liu, Y. Y. Liu, Cryst. Growth Des. 2011, 11, 2317.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. N. Li, J. H. Luo, S. Y. Wang, Z. H. Sun, T. L. Chen, M. C. Hong, Cryst. Growth Des. 2011, 11, 3744.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. N. Li, S. Q. Zhang, L. Han, Z. H. Sun, J. H. Luo, M. C. Hong, Cryst. Growth Des. 2013, 13, 106.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. Guo, F. Wang, H. Yang, X. L. Zhang, J. Zhang, Inorg. Chem. 2012, 51, 9677.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) G. C. Liu, Y. Q. Chen, X. L. Wang, B. Chen, H. Y. Lin, J. Solid State Chem. 2009, 182, 566.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSrs74%3D&md5=54294b9c2042d92ce0b55753792852f4CAS |
      (b) L. Zhu, J. Gao, Z. An, J. Mol. Struct. 2013, 1054, 234.
      (c) X. S. Wang, Y. Z. Tang, X. F. Huang, Z. R. Qu, C. M. Che, W. H. Chan, R. G. Xiong, Inorg. Chem. 2005, 44, 5278.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. W. Wang, J. Z. Chen, J. H. Liu, Cryst. Growth Des. 2007, 7, 1227.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) L. Wen, Y. Li, Z. Lu, J. Lin, C. Duan, Q. Meng, Cryst. Growth Des. 2006, 6, 530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtw%3D%3D&md5=e82e31892781d8f17ec0c0053fa4c475CAS |
      (b) J. G. Lin, S. Q. Zang, Z. F. Tian, Y. Z. Lin, Y. Y. Xu, H. Z. Zhu, Q. J. Meng, CrystEngComm 2007, 9, 915.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. Y. Gao, N. Wang, X. H. Xiong, C. J. Chen, W. P. Xie, X. R. Ran, Y. Long, S. T. Yue, Y. L. Liu, CrystEngComm 2013, 15, 3261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOrtL0%3D&md5=1c8d89d230df21b7e836208b87bf5b08CAS |

[14]  G. M. Sheldrick, SADABS 1996 (University of Göttingen: Göttingen).

[15]  G. M. Sheldrick, SHELXL-97: Program for Refining Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).