Facile Refluxing Synthesis of Hydroxyapatite Nanoparticles
Pakvipar Chaopanich A and Punnama Siriphannon A B CA Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand.
B Functional Nanostructured Materials Laboratory, College of KMITL Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand.
C Corresponding author. Email: kspunnam@kmitl.ac.th
Australian Journal of Chemistry 68(8) 1293-1298 https://doi.org/10.1071/CH14642
Submitted: 31 October 2014 Accepted: 13 January 2015 Published: 7 April 2015
Abstract
Hydroxyapatite (HAp) nanoparticles were successfully synthesized from an aqueous mixture of Ca(NO3)2·4H2O and (NH4)2HPO4 by a facile single-step refluxing method using polystyrene sulfonate (PSS) as a template. The effects of reaction times, pH, and PSS concentration on the HAp formation were investigated. It was found that the crystalline HAp was obtained under all conditions after refluxing the precursors for 3 and 6 h. The longer refluxing time, the greater the crystallinity and the larger the crystallite size of the HAp nanoparticles. The HAp with poor crystallinity was obtained at pH 8.5; however, the well-crystallized HAp was obtained when reaction pH was increased to 9.5 and 10.5. In addition, the X-ray diffraction patterns revealed that the presence of PSS template caused the reduction of HAp crystallite size along the (002) plane from 52.6 nm of non-template HAp to 43.4 nm and 41.4 nm of HAp with 0.05 and 0.2 wt-% PSS template, respectively. Transmission electron microscopy images of the synthesized HAp revealed the rod-shaped crystals of all samples. The synthesized HAp nanoparticles were modified by l-aspartic acid (Asp) and l-arginine (Arg), having negative and positive charges, respectively. It was found that the zeta potential of HAp was significantly changed from +5.46 to –24.70 mV after modification with Asp, whereas it was +4.72 mV in the Arg-modified HAp. These results suggested that the negatively charged amino acid was preferentially adsorbed onto the synthesized HAp surface.
References
[1] V. Perla, T. J. Webster, Int. J. Nanomed. 2006, 1, 351.Available at http://www.dovepress.com/nano-hydroxyapatite-thermally-denatured-small-intestine-sub-mucosa-com-peer-reviewed-article-IJN# [accessed 10 March 2015].| 1:CAS:528:DC%2BD28Xhtlantb%2FO&md5=a2914c83d0ffbdfcea588b6a369f4199CAS |
[2] M. Roy, A. Bandyopadhyay, S. Bose, Surf. Coat. Tech. 2011, 205, 2785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFygu7nE&md5=e7677a234e551e75ddc5123f4ff0dc4fCAS |
[3] M. F. Hsieh, L. H. Perng, T. S. Chin, H. G. Perng, Biomaterials 2001, 22, 2601.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFymu7k%3D&md5=984f453995eecf87ec865459fb838eb2CAS | 11519779PubMed |
[4] Y. H. Tseng, C. S. Kuo, Y. Y. Li, C. P. Huang, Mater. Sci. Eng., C 2009, 29, 819.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVyrt7g%3D&md5=1d48be0846c3386ada6f99bcc3e420abCAS |
[5] B. Nasiri-Tabrizi, P. Honarmandi, R. Ebrahimi-Kahrizsangi, Mater. Lett. 2009, 63, 543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKhtw%3D%3D&md5=ed26c04898dbd0db5acce228ae45f4daCAS |
[6] D. S. Seo, J. K. Lee, J. Cryst. Growth 2008, 310, 2162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlaisrg%3D&md5=dad244963359f6f5fb8a4ee79444cffbCAS |
[7] A. I. Mitsionis, T. C. Vaimakis, C. C. Trapalis, Ceram. Int. 2010, 36, 623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOrtLrF&md5=7082dd831c55cf4efdceef6e0a7d3afbCAS |
[8] G. Verma, K. C. Barick, N. Manoj, A. K. Sahu, P. A. Hassan, Ceram. Int. 2013, 39, 8995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotF2gu74%3D&md5=8312fc65318a2765c975e2cdd201f704CAS |
[9] H. M. KowalczyńSka, M. Nowak-Wyrzykowska, Cell Biol. Int. 1999, 23, 359.
| Crossref | GoogleScholarGoogle Scholar | 10579902PubMed |
[10] G. Hélary, F. Noirclère, J. Mayingi, V. Migonney, Acta Biomater. 2009, 5, 124.
| Crossref | GoogleScholarGoogle Scholar | 18809363PubMed |
[11] H. B. Zhang, K. C. Zhou, Z. Y. Li, S. P. Huang, J. Phys. Chem. Solids 2009, 70, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFagtbfN&md5=1428818f78a66c6abde19a5b510e4509CAS |
[12] Y. Wang, M. S. Hassan, P. Gunawan, R. Lau, X. Wang, R. Xu, J. Colloid Interface Sci. 2009, 339, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKjsbvO&md5=1aafa485cec55065b973765ef3e00257CAS | 19660764PubMed |
[13] C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, J. Lin, Cryst. Growth Des. 2009, 9, 2725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlygsb4%3D&md5=3494c431a837e618a5c81138e7e7b390CAS |
[14] Q. Luo, J. D. Andrade, J. Colloid Interface Sci. 1998, 200, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVejs7s%3D&md5=0ab7c062d5b9ae1d1a3ffc52c766d221CAS |
[15] K. Tomoda, H. Ariizumi, T. Nakaji, K. Makino, Colloids Surf., B 2010, 76, 226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlSnsA%3D%3D&md5=e6cf2220b1e7f45cd2c4595a9899b84dCAS |
[16] N. Y. Mostafa, P. W. Brown, J. Phys. Chem. Solids 2007, 68, 431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFCjsbg%3D&md5=4d131960ba6126dcb810b1081f092fbfCAS |
[17] Y. Zhao, J. Zua, S. Zua, Y. Huang, Z. Li, K. Zhou, Trans. Nonferrous Met. Soc. China 2011, 21, 1773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosl2ltro%3D&md5=bd155508c09795b824a2ec9820f82327CAS |
[18] B. Palazzo, D. Walsh, M. Iafisco, E. Foresti, L. Bertinetti, G. Martra, C. L. Bianchi, G. Cappelletti, N. Roveri, Acta Biomater. 2009, 5, 1241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1aiuro%3D&md5=35d5e4d3baa983f75b8f96c5b3b828c9CAS | 19083277PubMed |