Visible Light-Driven BiVO4/TiO2 Composite Photocatalysts: Preparation Methods and Photocatalytic Performance
Shuyun Wang A , Wenjun Li A B , Feiwu Chen A , Shaonan Gu A and Zhidong Chang AA Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
B Corresponding author. Email: wjliustb@126.com
Australian Journal of Chemistry 68(8) 1268-1275 https://doi.org/10.1071/CH14634
Submitted: 18 September 2014 Accepted: 6 January 2015 Published: 19 March 2015
Abstract
BiVO4/TiO2 composite photocatalysts were successfully synthesised via different methods, and the physical and photophysical properties of the as-prepared photocatalysts were fully characterised by X-ray diffraction, scanning electron microscopy, field-emission transmission electron microscopy, energy dispersive spectroscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy and Brunauer–Emmett–Teller (BET) surface area analysis. Methylene blue was selected as model pollutant to investigate the photocatalytic activity of BiVO4/TiO2 composite materials. The results reveal that BiVO4/TiO2 fabricated by different methods exhibits higher photocatalytic activity than pure BiVO4 and TiO2, and the coprecipitated BiVO4/TiO2 composite shows the best photocatalytic activity. The diffuse reflectance spectroscopy results demonstrated that the 20 wt-% coprecipitated BiVO4/TiO2 exhibited a significant, broad spectrum response not only between 400 and 500 nm but also from 500 to 800 nm wavelength.
References
[1] M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2qur4%3D&md5=1f69c14f4e7ad0fe2c36737b7e06311bCAS |
[2] C. C. Chen, W. H. Ma, J. C. Zhao, Chem. Soc. Rev. 2010, 39, 4206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtb3N&md5=8ed58f0baab8ccb19918a779fc153730CAS |
[3] X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yrsrg%3D&md5=3492b4035bf6de8e976c457fb4570318CAS |
[4] Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVyj&md5=b948e45945afda35d8167e5a27cfacc2CAS |
[5] H. Kisch, Angew. Chem. Int. Ed. 2013, 52, 812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslymsL3E&md5=1f1341dafccffb1ce924e1c014e8cdf0CAS |
[6] X. B. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslyrurc%3D&md5=cfd6913053ff5883f6e3ce78776d0874CAS |
[7] Y. Liu, J. F. Ma, Z. S. Liu, C. H. Dai, Z. W. Song, Y. Sun, J. R. Fang, J. G. Zhao, Ceram. Int. 2010, 36, 2073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSlsr8%3D&md5=89515b97735459f5a52755918635adf1CAS |
[8] S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, J. Catal. 2009, 262, 144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Wqs7c%3D&md5=948579be10bd0629b2945eba6743ece8CAS |
[9] L. Zhou, W. W. Wang, S. W. Liu, L. S. Zhang, H. L. Xu, W. Zhu, J. Mol. Catal. Chem. 2006, 252, 120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1yhtbs%3D&md5=3e6ff9c5bd746a62d4bec0019e586d80CAS |
[10] J. J. Ding, S. Sun, J. Bao, Z. L. Luo, C. Gao, Catal. Lett. 2009, 130, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2mtbY%3D&md5=7b143a3a47b8ca9703cbff6154a3e364CAS |
[11] Z. H. Ai, L. Z. Zhang, S. C. Lee, J. Phys. Chem. C 2010, 114, 18594.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsrjJ&md5=8133c60d63dbdb7224063af362d9d9d9CAS |
[12] D. Q. He, L. L. Wang, H. Y. Li, T. Y. Yan, D. J. Wang, T. F. Xie, CrystEngComm 2011, 13, 4053.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFKrtbg%3D&md5=86a190d6ac4a59882abf5ea032536672CAS |
[13] X. T. Hong, X. H. Wu, Q. Y. Zhang, M. F. Xiao, G. L. Yang, M. R. Qiu, G. C. Han, Appl. Surf. Sci. 2012, 258, 4801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFOjtr8%3D&md5=cbb38cb2c8633198a459a2fd8ce6c6abCAS |
[14] T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J. P. Jolivet, J. Phys. Chem. C 2011, 115, 5657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFClt7o%3D&md5=427902d5112efdd8557abf4bd492e880CAS |
[15] Y. H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett. 2010, 1, 2607.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVeiu7jI&md5=cb70917322cd924894e9e481aef6f332CAS |
[16] M. C. Long, W. M. Cai, H. Kisch, J. Phys. Chem. C 2008, 112, 548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOntLzK&md5=d22e1638babba5b66239418e835bc37aCAS |
[17] J. A. Seabold, K. S. Choi, J. Am. Chem. Soc. 2012, 134, 2186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVChs7o%3D&md5=96029e8b2545435005d60ceb2128589cCAS | 22263661PubMed |
[18] A. Kudo, Int. J. Hydrogen Energy 2006, 31, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCms7nN&md5=fbaf62be89993c4c182cddff8bb60c5cCAS |
[19] A. Kudo, R. Niishiro, A. Iwase, H. Kato, Chem. Phys. 2007, 339, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSisbvF&md5=19e76500493cd1df9e2474fe80141dccCAS |
[20] D. Zhou, L. X. Pang, J. Guo, H. Wang, X. Yao, C. Randall, Inorg. Chem. 2011, 50, 12733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSjsLrM&md5=583e2c8dcb18455635f2ef567273c4dbCAS | 22103679PubMed |
[21] D. K. Zhong, S. Choi, D. R. Gamelin, J. Am. Chem. Soc. 2011, 133, 18370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCiurbM&md5=b4236b487534f6369767398618070997CAS | 21942320PubMed |
[22] W. Liu, Y. Q. Yu, L. X. Cao, G. Su, X. Y. Liu, L. Zhang, Y. G. Wang, J. Hazard. Mater. 2010, 181, 1102.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2gs7g%3D&md5=278d35b3ca6cae0e280e3d2ef67f81faCAS | 20576353PubMed |
[23] A. P. Zhang, J. Z. Zhang, N. Y. Cui, X. Y. Tie, Y. W. An, L. J. Li, J. Mol. Catal. Chem. 2009, 304, 28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslymu7Y%3D&md5=1dc9350aff2e741218504501a7036f39CAS |
[24] G. Li, D. Zhang, J. C. Yu, Chem. Mater. 2008, 20, 3983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKht70%3D&md5=75d96f67dc490f433305dc4b4e3b1f3dCAS |
[25] S. W. Cao, Z. Yin, J. Barber, F. Y. C. Boey, S. C. J. Loo, C. Xue, ACS Appl. Mater. Interfaces 2012, 4, 418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOhtrnM&md5=a33dd78226fca062933704888f4db8f9CAS | 22141400PubMed |
[26] L. Ge, J. Mol. Catal. Chem. 2008, 282, 62.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1ClsLg%3D&md5=6391dd9c7fec55239622d84fb095cd0cCAS |
[27] A. P. Zhang, Z. J. Zhang, Appl. Surf. Sci. 2010, 256, 3224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVymuro%3D&md5=27a53c96765001d375dffb4443cdd6e2CAS |
[28] H. Xu, H. M. Li, C. D. Wu, J. Y. Chu, Y. S. Yan, H. M. Shu, Mater. Sci. Eng. B 2008, 147, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWkuro%3D&md5=880d5edd5a40a18a19a7738879ea18ffCAS |
[29] L. Li, B. Yan, J. Alloy. Comp. 2009, 476, 624.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGhurk%3D&md5=d47c905c527db71b8a4879858fa93f5bCAS |
[30] L. Chen, S. F. Yin, S. L. Luo, R. Huang, Q. Zhang, T. Hong, P. C. T. Au, Ind. Eng. Chem. Res. 2012, 51, 6760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVGltro%3D&md5=ce89ebe943d66e773c0713f0de66ed33CAS |
[31] M. C. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, Y. H. Wu, J. Phys. Chem. B 2006, 110, 20211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFCqs74%3D&md5=648bbc5c46df518d377ed42d6712cdd1CAS |
[32] J. Su, X. X. Zou, G. D. Li, X. Wei, C. Yan, Y. N. Wang, J. Zhao, L. J. Zhou, J. S. Chen, J. Phys. Chem. C 2011, 115, 8064.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Wntrc%3D&md5=8d5147cd49566bb721dfd7ebabf71e6cCAS |
[33] H. Jiang, M. Nagai, K. Kobayashi, J. Alloy. Comp. 2009, 479, 821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFyjtL4%3D&md5=f021fce736e8db844261387374b4994fCAS |
[34] T.-H. Ji, F. Yang, J.-Y. Zhou, H.-Y. Du, J.-Y. Sun, Spectrosc. Spect. Anal. 2010, 30, 1944.
| 1:CAS:528:DC%2BC3cXos12hsL0%3D&md5=14431dff6914a880b9a1f785843b4f63CAS |
[35] L. Guo, D.-J. Wang, F. Fu, X.-D. Qiang, F. Zhang, Applied Chemical Industry 2012, 41, 260.
| 1:CAS:528:DC%2BC38XnvFertLs%3D&md5=ce95684f32f462670000b52bab5aa921CAS |
[36] L. Hu, Z.-X. Ye, Y.-G. Lu, C.-H. Xu, J. Mol. Catal. 2013, 27, 378.
[37] Y. L. Min, K. Zhang, Y. C. Chen, Y. G. Zhang, Chem. Eng. J. 2011, 175, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGktbbP&md5=56111b1d0c9321a624bfad792fd1579aCAS |
[38] J. Wang, X. M. Fan, D. Z. Wu, J. Dai, H. Liu, H. R. Liu, Z. W. Zhou, Appl. Surf. Sci. 2011, 258, 1797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2itL3E&md5=4c2973fa0154c38176b72a56aebfb844CAS |
[39] N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett, J. Chen, ACS Appl. Mater. Interfaces 2012, 4, 3718.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVGlsLc%3D&md5=1a63a858d60556ed0d7b095256f59ba7CAS | 22746549PubMed |
[40] M. L. Guan, D. K. Ma, S. W. Hu, Y. J. Chen, S. M. Huang, Inorg. Chem. 2011, 50, 800.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2ms7bE&md5=65238f4b4fcd93825b8aa1b113bf7f10CAS | 21171642PubMed |
[41] J. Tang, Z. Zou, J. Ye, Angew. Chem. Int. Ed. 2004, 43, 4463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFOgsLw%3D&md5=1184f87dcb13db695d7baea9830d9c95CAS |
[42] Y. He, Y. F. Zhu, N. Z. Wu, J. Solid State Chem. 2004, 177, 3868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslKmt7c%3D&md5=1d9aa2bf571fc95119427d49c544da78CAS |
[43] W. Zhao, Y. Wang, Y. Yang, J. Tang, Y. Yang, Appl. Catal. B 2012, 115–116, 90.
| Crossref | GoogleScholarGoogle Scholar |
[44] Y. H. Xu, C. J. Liu, M. J. Chen, Y. Q. Liu, Int. J. Nanopart. 2011, 4, 268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVajtLY%3D&md5=d07cb69cd57676b688c6acaad894b58eCAS |
[45] M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, Y. H. Wu, J. Phys. Chem. B 2006, 110, 20211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFCqs74%3D&md5=648bbc5c46df518d377ed42d6712cdd1CAS | 17034198PubMed |
[46] F. Duan, Y. Zheng, M. Q. Chen, Appl. Surf. Sci. 2011, 257, 1972.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqtbrN&md5=2e50f231dc9557fbce8b5d4821db3a77CAS |
[47] A. P. Zhang, Z. J. Zhang, Mater. Lett. 2009, 63, 1939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos12rsrc%3D&md5=277257894a11b071567758be222f1dd4CAS |
[48] K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, J. Photochem. Photobiol. A 2000, 132, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1yqtb8%3D&md5=7e16d117335d2efd056c6f7e096972b6CAS |