Synthesis, Characterisation, and Antifungal Activities of Novel Benzodiazaborines*
Jiyoung Yang A , Brandon J. Johnson A , Allan A. Letourneau B , Christopher M. Vogels A , Andreas Decken C D , Felix J. Baerlocher B D and Stephen A. Westcott A DA Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada.
B Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada.
C Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
D Corresponding authors. Email: swestcott@mta.ca; adecken@unb.ca (X-ray studies); fbaerlocher@mta.ca (antifungal studies).
Australian Journal of Chemistry 68(3) 366-372 https://doi.org/10.1071/CH14534
Submitted: 31 August 2014 Accepted: 29 September 2014 Published: 15 December 2014
Abstract
Eight new fluoro- and methoxy-substituted benzodiazaborines have been prepared by a simple condensation reaction in high-to-excellent yields. All new compounds have been characterised by several physical methods, including X-ray diffraction studies on three examples. All new compounds were examined for antifungal activities against five species of potentially pathogenic fungi (Aspergillus niger, Aspergillus fumigatus, Rhizoctonia solani, Verticillium albo-atrum, and Verticillium dahliae). While substitution of the aromatic group derived from the 2-formylphenylboronic acid group had an effect on bioactivities, substitution on the parent thioamide C(=S)NH2 group of the starting thiosemicarbazide greatly reduced activities.
References
[1] J. Kahlert, C. J. D. Austin, M. Kassiou, L. M. Rendina, Aust. J. Chem. 2013, 66, 1118.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGrsL%2FL&md5=325ac86abf08bb2148ad61ca3fb7c7abCAS |
[2] H.-Z. Hu, Q. Gu, C. Wang, C. K. Colton, J. Tang, M. Kinoshita-Kawada, L.-Y. Lee, J. D. Wood, M. X. Zhu, J. Biol. Chem. 2004, 279, 35741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsl2hsbc%3D&md5=12bf7c02e3e9c84167bc71adc6af09ccCAS | 15194687PubMed |
[3] N. Micale, K. Scarbaci, V. Troiano, R. Ettari, S. Grasso, M. Zappala, Med. Res. Rev. 2014, 34, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1KisrjI&md5=a545d0e917a51002b15fc3417fdd25bdCAS | 24585725PubMed |
[4] A. Adamczyk-Woźniak, M. K. Cyrański, A. Żubrowska, A. Sporzyński, J. Organomet. Chem. 2009, 694, 3533.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Loibl, I. Klein, M. Prattes, C. Schmidt, L. Kappel, G. Zisser, A. Gungl, E. Krieger, B. Pertschy, H. Bergler, J. Biol. Chem. 2014, 289, 3913.
| Crossref | GoogleScholarGoogle Scholar | 24371142PubMed |
[6] M. P. Groziak, A. D. Ganguly, P. D. Robinson, J. Am. Chem. Soc. 1994, 116, 7597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsl2ltbc%3D&md5=6fb566d56729b48458d642dcd638dc16CAS |
[7] M. A. Graßberger, Liebigs Ann. Chem. 1985, 683,
| Crossref | GoogleScholarGoogle Scholar |
[8] G. Högenauer, M. Woisetschlaeger, Nature 1981, 293, 662.
| Crossref | GoogleScholarGoogle Scholar | 7027050PubMed |
[9] H. Jungwirth, F. Wendler, B. Platzer, H. Bergler, G. Hogenauer, Eur. J. Biochem. 2000, 267, 4809.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslyktr4%3D&md5=e4279318fd4614860b51f862c85c955cCAS | 10903515PubMed |
[10] M. A. Grassberger, F. Turnowsky, J. Hildebrandt, J. Med. Chem. 1984, 27, 947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksFGitrs%3D&md5=a7218911d53b96e7bca44c747399668eCAS | 6379179PubMed |
[11] M. C. Davis, S. G. Franzblau, A. R. Martin, Bioorg. Med. Chem. Lett. 1998, 8, 843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFSjsLc%3D&md5=212425edcf1353892ee6c07b5f48fb98CAS | 9871552PubMed |
[12] H. Bergler, S. Fuchsbichler, G. Hoegenauer, F. Turnowsky, Eur. J. Biochem. 1996, 242, 689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFOltg%3D%3D&md5=5d54b2e3013115a2d1f0f58e1331eba1CAS | 9022698PubMed |
[13] M. Svobodová, J. Barta, P. Simunek, V. Bertolasi, V. Machacek, J. Organomet. Chem. 2009, 694, 63.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. Baldock, G.-J. de Boer, J. B. Rafferty, A. R. Stuitje, D. W. Rice, Biochem. Pharmacol. 1998, 55, 1541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivV2gtr8%3D&md5=83c584e8238da8a9e46acb8e82d4e848CAS | 9633989PubMed |
[15] C. Baldock, J. B. Rafferty, S. E. Sedelinikova, S. Bithell, A. R. Stuitje, A. R. Slabas, D. W. Rice, Acta Crystallogr. Sect. D: Biol. Crystallogr. 1996, 52, 1181.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czpsFakuw%3D%3D&md5=bbf00d09350aeffdec8db4c29ab00929CAS |
[16] H. Bergler, G. Hogenauer, F. Turnowsky, J. Gen. Microbiol. 1992, 138, 2093.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Cns78%3D&md5=72573aafcb7d545f649c7542d4bb82f9CAS | 1364817PubMed |
[17] V. A. Dorokhov, O. G. Boldyreva, Izv. Akad. Nauk SSSR [Khim] 1986, 9, 2089.
[18] P. Gilbert, D. G. Allison, A. J. McBain, J. Appl. Microbiol. 2002, 92, 98S.
| Crossref | GoogleScholarGoogle Scholar | 12000619PubMed |
[19] R. C. Goldman, C. C. Doran, J. O. Capobianco, J. Bacteriol. 1988, 170, 2185.
| 1:CAS:528:DyaL1cXksFWns7o%3D&md5=48967c57040c9b7e6517eef903cfbec0CAS | 2834331PubMed |
[20] T. J. Inzana, W. E. Seifert, R. P. Williams, Infect. Immun. 1985, 48, 324.
| 1:CAS:528:DyaL2MXktVClu7k%3D&md5=8395341cd10e35d07e2f7308d4476f26CAS | 3872843PubMed |
[21] H. Jungwirth, H. Bergler, G. Hogenauer, J. Biol. Chem. 2001, 276, 36419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1yrtr0%3D&md5=b9215bffab1219f81a0fb09e462ffce4CAS | 11477081PubMed |
[22] C. Lam, F. Turnowsky, G. Hoegenauer, E. Schuetze, J. Antimicrob. Chemother. 1987, 20, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsFWjtLc%3D&md5=57e834cc30d4323d901c77e9ac173da1CAS | 3305463PubMed |
[23] M. Loibl, I. Klein, M. Prattes, C. Schmidt, L. Kappel, G. Zisser, A. Gungl, E. Krieger, B. Pertschy, H. Bergler, J. Biol. Chem. 2014, 289, 3913.
| Crossref | GoogleScholarGoogle Scholar | 24371142PubMed |
[24] U. Mette, H. Werner, C. Krasemann, J. Ungerechts, Infection 1980, 8, S215.
| Crossref | GoogleScholarGoogle Scholar | 7053193PubMed |
[25] B. Pertschy, G. Zisser, H. Schein, R. Koffel, G. Rauch, K. Grillitsch, C. Morgenstern, M. Durchschlag, G. Hogenauer, H. Bergler, Mol. Cell. Biol. 2004, 24, 6476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslentrk%3D&md5=fe8ec419f4904ae5a9572e4d920f95f8CAS | 15226447PubMed |
[26] I. Silva, L. J. Real, M. S. Ward, H. H. Xu, Appl. Microbiol. Biotechnol. 2014, 98, 5551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1aitLo%3D&md5=a1757cf300c01b5c2e3a156ade66cbe0CAS | 24622888PubMed |
[27] C. W. Levy, C. Baldock, A. J. Wallace, S. Sedelnikova, R. C. Viner, J. M. Clough, A. R. Stuitje, A. R. Slabas, D. W. Rice, J. Mol. Biol. 2001, 309, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsF2lurs%3D&md5=7c87abe1a415560652d016ae93dd15f1CAS | 11491286PubMed |
[28] J. Weiss, K. Muello, M. Victor, P. Elsbach, J. Immunol. 1984, 132, 3109.
| 1:CAS:528:DyaL2cXkt1Wrtrk%3D&md5=0b0a3175920989a3137e8f9e4295e69bCAS | 6373924PubMed |
[29] H. Bergler, D. Abraham, H. Aschauer, F. Turnowsky, Microbiology 1994, 140, 1937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFejtL4%3D&md5=9518b6b58b34f58596b7ee5e997ad7c1CAS | 7921245PubMed |
[30] B. Pertschy, G. Zisser, H. Schein, R. Koeffel, G. Rauch, K. Grillitsch, C. Morgenstern, M. Durchschlag, G. Hoegenauer, H. Bergler, Mol. Cell. Biol. 2004, 24, 6476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslentrk%3D&md5=fe8ec419f4904ae5a9572e4d920f95f8CAS | 15226447PubMed |
[31] J. W. Hicks, C. B. Kyle, C. M. Vogels, S. L. Wheaton, F. J. Baerlocher, A. Decken, S. A. Westcott, Chem. Biodiversity 2008, 5, 2415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2mt7fK&md5=20a9ff84fe02ea9655e4fb75f1680b51CAS |
[32] V. M. Dembitsky, A. A. A. Al Quntar, M. Srebnik, Chem. Rev. 2011, 111, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2kurnM&md5=c533431d3cb25680abbe4d0a5f83423eCAS | 21171664PubMed |
[33] A. Jabbour, D. Steinberg, V. M. Dembitsky, A. Moussaieff, B. Zaks, M. Srebnik, J. Med. Chem. 2004, 47, 2409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVans7o%3D&md5=3597948f02a7109353e8ef6bde213f3dCAS | 15115381PubMed |
[34] Y. Aramaki, H. Omiya, M. Yamashita, K. Nakabayashi, S.-I. Ohkoshi, K. Nozaki, J. Am. Chem. Soc. 2012, 134, 19989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOlsLbM&md5=fd91958c9df1b13349216859645f2f81CAS | 23205747PubMed |
[35] M. M. Goodman, J. McConathy, Curr. Top. Med. Chem. 2013, 13, 869.
| Crossref | GoogleScholarGoogle Scholar | 23590165PubMed |
[36] B. K. Park, N. R. Kitteringham, P. M. O’Neill, Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVaqtrc%3D&md5=1dce837344063840cb31af2eb28d6765CAS | 11264465PubMed |
[37] J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFegsb7I&md5=00ce6f7e0a2a867c39c916a2772f6360CAS | 24299176PubMed |
[38] A. Galano, A. Martinez, J. Phys. Chem. B 2012, 116, 1200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsLjI&md5=7f3446b5195aaffba0651cc1b53b6185CAS | 22188587PubMed |
[39] A. R. Katritzky, Y.-J. Xu, A. V. Vakulenko, A. L. Wilcox, K. R. Bley, J. Org. Chem. 2003, 68, 9100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlarsb8%3D&md5=bd3abc3ec74860daaa7e0f104a572dc0CAS | 14604387PubMed |
[40] K. Kogure, S. Goto, M. Nishimura, M. Yasumoto, K. Abe, C. Ohiwa, H. Sassa, T. Kusumi, H. Terada, Biochim. Biophys. Acta, Gen. Subj. 2002, 1573, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1agsr8%3D&md5=40b7a32f27364ab5a95e4f6a67638ad4CAS |
[41] M. M. P. Santos, O. Vieira-da-Motta, I. J. C. Vieira, R. Braz-Filho, P. S. Goncalves, E. J. Maria, W. S. Terra, R. Rodrigues, C. L. M. Souza, J. Nat. Med. 2012, 66, 354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Ogsbo%3D&md5=fe620b346228bb912d197ede18ccf1f9CAS |
[42] C. S. J. Walpole, R. Wrigglesworth, S. Bevan, E. A. Campbell, A. Dray, I. F. James, M. N. Perkins, D. J. Reid, J. Winter, J. Med. Chem. 1993, 36, 2362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFOjs7k%3D&md5=7aa1766b8344c432200aaaedd6175ba0CAS |
[43] B. Gierczyk, M. Kazmierczak, L. Popenda, A. Sporzynski, G. Schroeder, S. Jurga, Magn. Reson. Chem. 2014, 52, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFSns7w%3D&md5=605c88d0e2a75b793fcec6f1a6b6d575CAS | 24519471PubMed |
[44] D. Kanichar, L. Roppiyakuda, E. Kosmowska, M. A. Faust, K. P. Tran, F. Chow, E. Buglo, M. P. Groziak, E. A. Sarina, M. M. Olmstead, I. Silva, H. H. Xu, Chem. Biodiversity 2014, 11, 1381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyju7fM&md5=edf07287a8f5f023504232e7c79ae198CAS |
[45] A. Cirou, S. Mondy, S. An, A. Charrier, A. Sarrazin, O. Thoison, M. DuBow, D. Faure, Appl. Environ. Microbiol. 2012, 78, 481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOruw%3D%3D&md5=1018cea8f4c74ae76e3ecbade8a9eb59CAS | 22081576PubMed |
[46] A. Crépin, C. Barbey, A. Cirou, M. Tannieres, N. Orange, M. Feuilloley, Y. Dessaux, J.-F. Burini, D. Faure, X. Latour, Plant Soil 2012, 358, 27.
| Crossref | GoogleScholarGoogle Scholar |
[47] S. Diallo, A. Crepin, C. Barbey, N. Orange, J.-F. Burini, X. Latour, FEMS Microbiol. Ecol. 2011, 75, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1OjurY%3D&md5=0effbf57a6381c64c8ea271d95a7619eCAS | 21204870PubMed |
[48] N. Florez-Zapata, J. C. Garcia, P. Del Portillo, S. Restrepo, D. Uribe-Velez, Acta Biol. Colomb. 2013, 18, 449.
| 1:CAS:528:DC%2BC2cXotlKhsrw%3D&md5=af6136c528ed2f84b0afbc90a02f4475CAS |
[49] M. A. Gururani, C. P. Upadhyaya, V. Baskar, J. Venkatesh, A. Nookaraju, S. W. Park, J. Plant Growth Regul. 2013, 32, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsl2lsL0%3D&md5=6ba5c4f260e4f4bbdbd8bb7b67a01d7aCAS |
[50] B. G. Hopkins, D. A. Horneck, A. E. MacGuidwin, Am. J. Potato Res. 2014, 91, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Ons7o%3D&md5=1e044d1c30d3dc8254073e768ceedddfCAS |
[51] O. Inceoğlu, J. Falcao Salles, J. D. Elsas, Microb. Ecol. 2012, 63, 460.
| Crossref | GoogleScholarGoogle Scholar | 21898103PubMed |
[52] A. Nookaraju, S. Kappachery, J. W. Yu, S. W. Park, Am. J. Potato Res. 2011, 88, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFylu7%2FK&md5=850144025f15a20b4cf31c50c4f4cae5CAS |
[53] A. K. Pandey, C. R. Singh, A. K. Dwivedi, D. S. Tripathi, A. R. Mishra, R. M. Mishra, Acta Cienc. Indica. Chem. 2009, 35, 419.
| 1:CAS:528:DC%2BC3cXotVaqtb4%3D&md5=cd80518a1311e8ae5066239887132338CAS |
[54] Bruker SAINT 7.23 A 2006 (Bruker AXS: Madison, WI).
[55] Bruker SADABS 2001 (Bruker AXS: Madison, WI).
[56] G. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS | 18156677PubMed |